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1. Introduction 

Artificial intelligence (AI) planning technology provides powerful tools for solving 

problems that require the coordination of actions in the pursuit of specified goals.  To 

date, however, there has been limited success in transitioning this technology to 

significant applications in the commercial, military, and space sectors.  A major obstacle 

to technology transfer lies with the lack of control available to potential users of planning 

systems.  AI planning systems have traditionally been designed to operate as black boxes:

they take a description of a domain and a set of goals and automatically synthesize a plan 

for achieving the goals.  Human planners, however, are generally reluctant to cede full 

control to automated planning systems in this manner.  

Many potential consumers of planning technology require more user-centric tools that 

are designed to augment human skills rather than replace them.  This observation has led, 

in recent years, to the development of a number of plan-authoring frameworks. Plan-

authoring systems provide a set of plan editing and manipulation capabilities that support 

users in developing plans.  These systems introduce a degree of structure to the planning 

process, yielding principled representations of plans with well-defined semantics.  Plan-

authoring systems can include a range of planning aids that reason over this structure; 

however, the role of such automated aids is to augment human planning skills by 

facilitating human-driven plan development. Both the military and space communities are 

showing tremendous interest in user-centric planning technology that combines plan 

authoring and automated decision aids because of the potential to improve the quality and 

process of plan development without incurring the high knowledge modeling costs and 

loss of control associated with fully automated planning systems. 

We pursued three lines of work on this project within the general theme of user-centric 

planning technologies designed to augment human planning skills.   

A. PASSAT  

The main focus of the project was the development of the PASSAT system (Plan 

Authoring based on Sketches, Advice, and Templates), a mixed-initiative framework 

for developing complex, hierarchical plans. At its heart, PASSAT is a plan-authoring 

system in which users construct and modify plans interactively.  Users can draw upon 

a library of templates, to the extent they desire, to assist with plan development.  

Templates correspond to a form of hierarchical task network (HTN), and may encode 

both parameterized standard operating procedures and cases corresponding to actual 

or notional plans developed for related tasks.

To complement these interactive tools, PASSAT includes a range of automated and 

mixed-initiative planning capabilities.  Users can invoke an automated planning 

mode based on standard HTN methods to expand open tasks within a plan.  A mixed-

initiative plan sketch facility helps users refine outlines for plans to complete 

solutions, by detecting problems and proposing possible fixes.  Advice enables users 

to define high-level policies for plan content that the system enforces during 

interactive and automated plan development.  PASSAT also includes process

facilitation mechanisms to aid the user in managing incomplete tasks during plan 

development.   
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With its combination of interactive and automated capabilities, PASSAT enables a 

user to quickly develop plans that draw upon past experience encoded in templates 

but that are customized to his individual preferences and the demands of the current 

situation.

B. CODA 

PASSAT provides technology to support a single user in the development of a 

complex plan.  To complement that capability, we developed a framework for 

supporting a team of human planners who must work together to create a common 

global plan. In a jumpstart effort to this project (funded under DARPA Contract No. 

F30602-97-C-0067), we developed an initial prototype system called CODA 

(Coordination of Distributed Activities) that addresses the problem of multiplanner 

coordination.  On this contract, we generalized and extended this framework to 

provide a transition-ready system for use within the Special Operations Forces (SOF) 

community.

C. Qualitative Reasoning about Plans 

One of the most important benefits from developing a structured representation of a 

plan is the ability to perform causal analysis to determine the impact of changes on 

the plan. The current standard for reasoning about plan causality focuses on linking 

enabling effects of actions or initial world conditions with preconditions of 

subsequent actions.  This approach is ill-suited to interactive planning environments 

in which users may be constructing ad hoc plans on the fly. For this reason, we 

developed a qualitative approach to reasoning about plans that does not require the 

full causal annotations dictated by traditional methods. 

Our work on this project presents a substantial departure from most work in the artificial 

intelligence community on planning systems through its emphasis on supporting a user in 

the development of complex, real-world plans.  We believe that continued work in this 

area is essential to enable the development of technology that can assist human planners 

faced with increasingly complex planning tasks.  

The remainder of this report is organized as follows. Section 2 describes the core plan 

authoring capabilities within PASSAT. Section 3 describes our work on robust plan 

sketching, while Section 4 describes our work on policies. Section 5 describes our 

framework for reasoning qualitatively about the effects of changes on a plan.  Section 5.3 

describes our framework for qualitative reasoning about plans. Section 6 summarizes our 

work on CODA within the context of this contract.  Finally, Section 7 presents our 

conclusions for the project.  Appendix A contains copies of the main technical 

publications produced on this contract. 
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2. Plan Authoring within PASSAT 

2.1. Overview of PASSAT 

PASSAT is a plan-authoring system in which users construct and modify plans 

interactively (Myers et al. 2002).  Users can draw upon a library of templates, to the 

extent they desire, to assist with plan development.  Templates correspond to a form of 

hierarchical task network (HTN) (Tate 1977; Erol et al. 1994), and may encode both 

parameterized standard operating procedures and cases corresponding to actual or 

notional plans developed for related tasks. 

 To complement these interactive tools, PASSAT includes a range of automated and 

mixed-initiative planning capabilities.  Users can invoke an automated planning mode 

based on standard HTN methods to expand open tasks within a plan.  A mixed-initiative 

plan sketch facility helps users refine outlines for plans to complete solutions, by 

detecting problems and proposing possible fixes.  Advice enables users to define high-

level policies for plan content that the system enforces during interactive and automated 

plan development.  PASSAT also includes process facilitation mechanisms to aid the 

user in managing incomplete tasks during plan development.  Such assistance is critical 

in complex applications, as it helps the user stay focused without overlooking important 

details.

Two key principles guided the design of PASSAT: 

(a) Flexible, ‘out of the box’ planning:  Traditional AI planning systems lock users 

into the set of solutions implied by a domain’s predefined action models.  Within 

PASSAT, templates are viewed as guidelines for performing tasks; the human planner 

is free to expand the set of solutions defined by the templates. In particular, a user can 

override constraints, drop tasks, or insert additional tasks to match his personal 

preferences or the demands of the current situation.  This flexibility is critical for 

domains in which correct and comprehensive collections of templates cannot be 

provided.

(b) Controllable user-centric automation: Automated capabilities should complement 

human planning skills and be readily directable by a human.   

2.2. Technology Scope 

PASSAT is generic, domain-independent technology but is tailored toward applications 

for which (a) the complexity of the domain precludes full capture of all relevant planning 

knowledge, and (b) human input is critical, but some amount of automation would 

improve plan quality and reduce overall planning time. Special Operations Forces (SOF) 

mission planning, the driving domain for the Active Templates program, has these 

characteristics.

Standard operating procedures exist for many high- and mid-level activities in the SOF 

domain, and are readily amenable to encoding within an HTN representation.  For 
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example, a hostage rescue operation can be characterized as consisting of the high-level 

objectives of performing reconnaissance in the areas around the rescue site, establishing a 

safe haven to which to remove the hostages, undertaking the assault to rescue the 

hostages, and transporting the hostages to the safe haven.  Low-level operations follow 

standard doctrine and can also be modeled in a relatively straightforward manner.
1

Intermediate strategy decisions pose a bigger challenge. For example, informed selection 

of areas and methods for reconnaissance requires deep background knowledge of 

reconnaissance operations, breadth of understanding of the current situation, and 

significant experience. Capturing and modeling this type of strategic knowledge in full 

presents a tremendous challenge. 

SOF planning lies well beyond the range of current automated planning technologies; 

moreover, fully automated solutions are unlikely ever to succeed because of the difficulty 

in formulating strategic knowledge with sufficient fidelity.  In contrast, a PASSAT-style 

plan-authoring system provides a good technological match for the SOF planning 

domain. Missions arise unexpectedly, resulting in a need to assemble high-quality plans 

rapidly.  Thus, the availability of tools to expedite plan development is important.  

Because many types of SOF operations can be broadly characterized with predefined 

templates, knowledge bases can be developed that capture certain portions of the 

planning process.  However, individual operations tend to be highly distinctive, making it 

important to have tools that enable users to modify and customize plans to suit the needs 

of a particular situation. 

Many potential application domains for planning technology share these characteristics of 

having partially formalizable domain knowledge and requiring significant user input to 

produce high-quality, situation-specific plans.  On the military side, examples include air 

operations, disaster relief planning, and noncombatant evacuation operations.  Space 

applications include science mission planning and ground operations planning. 

2.3. PASSAT Example    

Figure 1 shows a snapshot of the PASSAT interface during a planning session. The large 

frame on the left contains a hierarchical decomposition of the current partial plan.  Items 

next to folder icons are tasks that have been expanded; items next to star icons are tasks 

that can be expanded further (either through automated template application or 

interactively); and items next to document icons are tasks that match no templates. The 

frame on the upper right shows the current agenda – the list of planning steps the user 

must perform to address outstanding issues.  The frame on the lower right shows the list 

of information requirements – sources of information that have been identified by the 

user or PASSAT's planning knowledge as relevant to various portions of the planning 

process.

1 Many of our templates were derived directly from SOF field manuals. 
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Figure 1. PASSAT Interface during Plan Development 

The human planner develops the plan by selecting a planning step from the agenda and 

performing that step (many of these planning steps are accessible through the plan 

display as well).  If the planning step is to expand the PROVIDE-CSAR-COVERAGE

task, for example, the planner would be presented with several options: apply one of the 

templates that matches the task (see Figure 2), enter an expansion manually, or create a 

sketch for achieving the PROVIDE-CSAR-COVERAGE task and work with PASSAT to 

refine that sketch.  Performing this planning step may cause additional planning steps to 

be added to the agenda (i.e., new tasks, variables, and constraints may have been 

introduced into the plan) and new information requirements as well.  
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2.4. Plan Representation 

PASSAT's representation of plans 

and tasks is based on a fairly 

standard HTN model (similar to that 

of (Erol et al. 1994)), augmented 

with a rich temporal representation 

for tasks.  Using PASSAT, a user 

would describe the objective of the 

plan in the form of one or more task

statements, each consisting of a task

operator and terms (variables, 

instances, or functions applied to 

terms). 

Templates A template describes one 

way that a task (i.e., the template’s 

purpose) can be decomposed into 

subtasks.  A template consists of a 

set of these subtasks, as well the 

variables used in the template, 

constraints on the applicability of the 

template, and the effects of 

successfully performing individual 

tasks and the entire template. 

Different templates may describe 

different decompositions for the 

same task. 

 PASSAT’s template 

representation supports two features 

not found in the framework of (Erol 

et al. 1994), namely, information 

requirements (discussed in detail below) and enumeration tasks.  Enumeration tasks 

enable the specification of a set of tasks relative to a set of terms that satisfy a designed 

predicate.  For example, the enumeration task 

?city.DISTANCE(?city,?hostage-locn)<20

        RECON(?city)

indicates that a RECON task should be performed  for each city within the specified 

distance.  Other HTN frameworks (e.g., O-Plan (Currie and Tate, 1991) and SIPE-2 

(Wilkins 1993)) provide similar mechanisms for enumerating subtasks relative to a 

designated constraint. 

Figure 2. A Candidate Template for Task 

Refinement
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Constraints Constraints consist of state predicates that denote hard or soft conditions, 

perhaps due to physical laws or policy rules.  PASSAT employs a three-valued logic for 

constraints, grounded in the values TRUE, FALSE, and UNKNOWN.

Automated constraint checking is performed when constraints are created or modified in 

the plan.  Checking of ground constraints may return a status of UNKNOWN, if the 

information is not specified in the world state; such constraints would need to be 

validated explicitly by the user.  Checking of nonground constraints occurs only when the 

number of possible instantiations is less than a predefined threshold, with the system 

testing whether the constraint is valid or invalid for each (i.e., establishing that the 

constraint is necessarily true or false independent of the instantiation).   Otherwise, the 

system returns UNKNOWN and the constraint is rechecked when more variables are 

instantiated. 

Unlike in automated planning systems, a constraint with value other than TRUE does not 

necessarily halt the process or cause backtracking.  Instead, a violated constraint is called 

to the attention of the user, who has the choice of ignoring the violation or changing the 

step that triggered the violation. 

Temporal Representation PASSAT supports the scheduling of tasks via constraints on 

the earliest and latest possible times for the start and end points of tasks.  Temporal 

constraints typically refer to these end points but may also refer to upper and lower 

bounds on those time points. Temporal constraints can also be expressed using Allen’s 

interval relations (Allen 1984). 

Domain Definition PASSAT utilizes a number of coordinated databases to define its 

application domain.  An ontology (based on the Generic Frame Protocol representation 

(Karp et al. 1995)) defines the hierarchical organization of classes and instances and their 

properties.  State predicate and task statements are declared, specifying the number and 

classes of their arguments.  Functions are similarly declared, with the additional 

declaration of the class of the function's value.  Some predicates and functions are 

computable (e.g., <, +, and Distance) while others are defined by their extent.  The 

world state is defined by a set of ground state predicates.

2.5. Mixed-initiative Plan Development 

A user directs planning in PASSAT through a browser-based interface. PASSAT 

provides two main modes of mixed-initiative plan development: interactive plan 

refinement, and plan sketching. Here, we describe interactive plan refinement; plan 

sketching is described in Section 3. 

Interactive plan refinement in PASSAT involves three types of planning step: expand

task, instantiate variable, resolve constraint.

Expand Task For task expansion, the system offers the user the choice of applying a 

predefined template, specifying a set of subtasks interactively, sketching a solution (see 

below), or dropping the task.
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When the user chooses a template to apply, the system unifies the task and the template's 

purpose, making appropriate substitutions throughout the template.  PASSAT adds the 

subtasks and constraints of the template to the plan.  PASSAT also extends its agenda to 

include planning steps to expand the new subtasks, to check the new constraints, and to 

instantiate any unbound variables from the template.  The planning step for the parent 

task is marked as completed and removed from the agenda.

PASSAT checks the status of all constraints created during task expansion.  For a valid 

constraint, the planning step to check it is removed from the agenda.  For an invalid 

constraint, the planning step is flagged.

Other planning steps may be affected by a task expansion.  If the expansion results in the 

assignment of a variable, the planning step for instantiating that variable is removed.  

Also, the status of constraints that contain that variable might now be resolvable; the 

system checks those constraints and updates the planning steps, if necessary.

Instantiate Variable To aid with variable instantiation, PASSAT presents to the user the 

set of values that satisfy all relevant constraints; the user can select from this set, provide 

an alternative value (hence, override a relevant constraint), or simply mark certain values 

as unacceptable.  When the variable is instantiated, any impacted constraints are 

rechecked.  

Resolve Constraint As noted above, PASSAT provides automated checking of 

constraints as part of template application, with the agenda being used to track constraints 

that the system was unable to validate. Resolve constraint steps enable a user to declare 

that the system can disregard designated unsatisfied constraints in a given situation. A 

user may wish to do so because (a) he has more recent information that would validate 

the constraint, (b) he knows that the constraint is overly strong for the current situation, 

or (c) he wants to explore a what-if scenario.  

2.6. Temporal Visualization  

The tree-oriented representation of the plan within PASSAT's browser-based interface 

(e.g., see Figure 1) provides a good overview of the hierarchical structure of  a plan.  This 

type of view is valuable for understanding the relationships among actions and high-level 

objectives.  It does not, however, provide insight into the temporal structure of the plan. 

Because temporal information is critical to understanding and evaluating a plan, PASSAT 

includes a capability to display a timeline-based view of a plan.  This temporal 

presentation of a PASSAT plan makes use of the SOFTools Temporal Plan Editor (TPE).  

In particular, we developed a translator that maps a PASSAT plan (complete or partial) 

into the internal plan representation used by the SOFTools TPE (i.e., the .sof 

representation). Because the .sof language is weaker than that of PASSAT, the translated 

plans provide only a subset of the content of a PASSAT plan.  Still, there is sufficient 

information to communicate the temporal nature of a PASSAT plan. 
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The translator exploits two data sources.  First, there is a mapping of the primitive actions 

and their arguments within the PASSAT domain model to SOFTools graphical 

constructs.  For example, a PASSAT `swim' action maps to a SOFTools Move arrow 

with an accompanying swimmer icon.  The drawings of places for the SOFTools timeline 

are determined by exploiting type information for PASSAT actions.  Second, template-

specific drawing routines define aggregated display capabilities.  The template-level 

mappings are not necessary, as each template can be reduced to its constituent actions. 

However, such mappings can lead to improved layouts of a plan by providing specialized 

directions on how to draw commonly occurring idioms. 

2.7. Usability Features 

We have incorporated several features into PASSAT to facilitate its use within real 

applications. 

Because the development of a plan may span several days or be interrupted by other 

duties, PASSAT offers the ability to save a plan and to restart it later.  As PASSAT is 

further developed to support multiple planners working on a single plan, this facility will 

allow parallel efforts to be coordinated in a shared plan repository. 

A planner may sometimes develop a part of the plan and realize that the initial idea will 

not work.  The system currently allows the user to undo the steps in reverse order.  In the 

future, the user will be able to back out of earlier steps without necessarily losing later, 

independent steps. 

PASSAT is designed to reduce the chance of inadvertent errors.  Strong typing for task, 

function, and predicate definitions enables the checking of inputs for consistency.  If a 

processing error should occur in the system, the undo mechanism can provide recovery to 

a safe checkpoint. 

2.8. Modal Truth Criterion 

One of the key benefits of automated planning technology is the ability to identify 

harmful interactions among actions within a plan.

Figure 3 shows a simple example from the Special Operations Forces (SOF) domain of a 

harmful interaction that involves actions that might arise during the planning of a boat 

exfiltration. After the execution of the first action boat1 will be located at green-
beach. The pickup from red-beach clearly cannot be executed immediately after this 

sailing action, as the boat will not be at red-beach. More formally, an effect of the first 

action At(boat1 green-beach) conflicts with a precondition of the second action 

At(boat-1 red-beach).

The example in Figure 3 is extremely simple, as it involves two successive actions.  More 

generally, however, interactions can occur among actions scattered throughout a plan. 

The Modal Truth Criterion (MTC) is a well-understood algorithm designed to detect 

action interference in partial-order plans (Tate 1977; Chapman 1987).  
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Figure 3. Conflicting Exfiltration Actions

We have implemented an MTC reasoning module in PASSAT to enable the planner to 

detect harmful interactions between planned actions. Our implementation is based on the 

standard algorithms developed by Tate (1977). It rests on top of an explicit representation 

of the preconditions and effects of actions within templates.   

Figure 4 shows the encoding of this knowledge for the simple exfiltration example. The 

effects of the Sail action document that the boat has moved from its initial location at 

the USS-E after the action is performed, and will be located at green-beach. The 

preconditions of the pickup action require that the boat be located at red-beach.

Figure 4. Example with Action Preconditions and Effects

The MTC conflict detection procedure checks every action’s precondition in a plan to 

determine if it is satisfied or violated by the effects of other actions. In our example, the 

MTC reasoning module will determine that the At(boat1,red-beach) precondition of 

the pickup action is violated by the At(boat1, green-beach) effect of the Sail
action.

Conflict detection is a computationally expensive task, as the system must identify for 

each precondition the set of actions that could potentially support and interact which 

occur in the closest temporal proximity to it. We have made this process as efficient as 

Sail(boat1,USS-E,green-beach)

Pickup(yellow1,boat1,red-beach)

Pre: {At(boat1,USS-E)}

Effects:

{(not (At(boat1,USS-E))

  (At(boat1,green-beach)} Pre: {At(boat1,red-beach)}

Effects:

{(not

   (At(yellow1,red-beach)) 

Sail(boat1,USS-E,green-beach)

Pickup(yellow1,boat1,red-beach)
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possible by recording a look-up table that enables quick determination of the actions in a 

plan that are applicable in checking a given precondition.

Previous implementations of the MTC have centered on fully automated solutions where 

the MTC conflict detection routine is run after each plan state modification
2
 (add action, 

bind variable, etc.). Identified conflicts are added to the planner’s agenda as “flaws” that 

the planner needs to resolve. This model is not well-suited to a mixed-initiative planning 

environment since many of the conflicts that arise during plan authoring are temporary 

and will be resolved by further plan edits (Peot and Smith, 1993).  A user will quickly 

become irritated with an agenda full of such transitory problems.  

The challenge in a mixed-initiative framework is to identify only those conflicts that truly 

warrant a user’s attention. Our approach takes into account the agenda of outstanding 

planning tasks that PASSAT maintains (see Section 2.9). We identify two threat classes 

for categorizing the conflicts identified by the MTC and use that categorization to control 

the conflicts presented to the user. A definite threat is a conflict between action 

preconditions and effects that cannot be resolved by the items currently on the plan 

agenda. A possible threat is a conflict between action preconditions for which we can 

identify at least one agenda item that might resolve it.  

To illustrate, first consider the plan fragment in Figure 4. For this small plan, there would 

be no outstanding agenda items because all variables are instantiated and the actions are 

totally ordered. Thus there are no further steps to take in completing the plan that would 

eliminate the problem. As such, the interaction between the two tasks would be a definite 

threat.  In contrast, consider the incomplete plan in Figure 5. Here, the variable ?boat
has not yet been instantiated; this type of process information is tracked by PASSAT’s 

agenda. In this case, there is a possible threat in the case where ?boat is later bound to 

boat1; the threat can be avoided, however, by making a different binding choice.

Within PASSAT, the user can actively browse potential threats. However, only definite 

threats appear on the agenda.   This approach eliminates the distractions that could arise 

from overloading the user with many temporary problems that subsequent planning 

activities would correct without additional intervention by the user. 

Our solution makes the assumption that we have complete knowledge about the plan 

agenda. This assumption does not hold in situations where a user is allowed to make 

arbitrary edits to a plan. Such an environment would require an extension of our 

definition of definite threats to include the notion of plan publication: a definite threat 

could occur only in a published portion of the plan, as we would not expect future edits to 

be made to those plan elements.   

2 The frequency of “critic” invocation is an important issue in automated planners. Some systems, such as 

SRI’s SIPE-2 planner (Wilkins 1993), employ a “lazy” strategy where plan critics are invoked only after 

completion of a planning level. Doing so can delay the detection of problems but greatly reduces the 

overall amount of time devoted to constraint checking.  

Pre: {At(?boat,USS-E)}
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Figure 5. Example of a Possible Threat  

Our work presents a first step toward a practical approach for supporting MTC reasoning 

within a mixed-initiative planner.. Further work is needed in the following important 

areas: 

Conflict resolution support. The key problem is the interactions between 

resolution options and other constraints in a plan, as selecting a resolution to one 

conflict may introduce new conflicts.  

Preemptive conflict identification. We are currently using the MTC in a reactive 

mode where we inform the user of the problems introduced into a plan after plan 

modification options have been selected and applied. It would be useful to 

provide a look-ahead function that could preemptively identify conflicts 

associated with available options so that users could avoid introducing conflicts. 

2.9. Process Facilitation 

PASSAT facilitates the user's plan-authoring process by helping the user track 

information that is important to the development of the plan.  Process facilitation is 

supported primarily by two capabilities:  

A prioritized agenda of planning steps listing the decisions that the user must 

make to address problems or incompleteness in the current plan. 

A mechanism for identifying key information requirements implicit in the user's 

partial plan, and for directing the user's attention to relevant plan elements when 

new information arrives.   

2.9.1. Agenda and Prioritization  

PASSAT's agenda consists of the open planning steps facing the user given the current 

state of planning.  By ‘planning steps’, we mean decisions and actions that the user 

makes in the process of developing the plan; these are distinguished from the activities 

that are part of the plan itself.  PASSAT currently supports three types of planning step – 

expand task, instantiate variable, and resolve constraint – described earlier. The planning 

Effects:

{(not (At(?boat,USS-E))

  (At(?boat,green-beach)}Pre: {At(boat1,  red-beach)}

Effects:

{(not

   (At(yellow1,red-beach)) 

Sail(?boat,USS-E,green-beach)

Pickup(yellow1,boat1,red-beach)
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steps PASSAT displays in its agenda can be filtered by the user along several 

dimensions, including step type and completion status.  The user can also sort the agenda 

along several dimensions, including step type, creation time, and alphabetical order. The 

filtering and sorting facilities can be especially useful for helping the user find a 

particular step on the agenda. 

In real domains, the development of a plan can involve hundreds or even thousands of 

decisions.  Correspondingly, PASSAT's agenda can grow quite long during the planning 

process.  The system provides some basic mechanisms to control agenda growth – 

instantiating variables during template application, automatic calculation of constraints – 

and to control information overload in the agenda display – the aforementioned agenda 

filtering and sorting.  However, even with these capabilities, the agenda can frequently 

reach a size that is overwhelming to the user.  In the face of a large number of planning 

steps, we need a technique for keeping the human planner focused on the most important 

ones.

To deal with this problem, we have developed mechanisms for prioritizing the planning 

steps on the agenda, according to some notion of a step's importance to the planning 

process.  Our approach has been to offer a suite of prioritization tools, from which the 

user may choose given the specific planning situation.  PASSAT supports three 

prioritization approaches: 

Predefined Each subtask, variable, and constraint in a template may be tagged 

with a qualitative priority (high, medium, or low), corresponding to the 

importance of making a decision about that entity (expanding the task, 

instantiating the variable, checking the constraint).  Predefined priorities always 

take precedence over PASSAT's other prioritization methods in ordering the 

agenda display.

Commitment-based This approach prioritizes each planning step according to 

the degree that a decision will constrain the rest of the planning process, giving 

highest priority to the most constraining decisions.  This criterion is especially 

useful in collaborative planning situations, where it is important to make decisions 

early when they will constrain the alternatives available to other planners.  Our 

technique measures commitment as the expected number of future decisions 

eliminated by performing the step.  We approximate this with a recursive formula 

that performs a lookahead search through the plan space.  While we use some 

simple heuristics to reduce the size of the search, the current procedure is still 

reasonably expensive relative to PASSAT's other update calculations. As a result, 

the current implementation of commitment-based prioritization covers only tasks.  

In future work, we will investigate techniques for approximating the commitment 

level of a planning step more efficiently. 

Experience-based In contrast to the commitment-based approach, which is an 

attempt to identify what the planner should do next based on some theoretical 

model of planning, the experience-based approach bases its prioritization on what 
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real human planners have done first in the past.  The experience-based 

prioritization technique stores preference histories of planning steps, and learns a 

preference function for them using the online learning algorithm of  (Cohen et al. 

1998).  Planning steps are indexed by the step type, the object name, and the ‘call 

stack’ of templates that created the object. 

Other possible methods for deriving a step's priority include 

Urgency-based: prefer decisions that involve execution tasks that are scheduled to 

start soon.

Backtracking-based: prefer decisions that are difficult to achieve. This is 

effectively the prioritization criterion of the Fewest Alternatives First strategy and 

related heuristics (Pollack et al. 1997) used in automated planning.

Depth-first: prefer steps that derive from the steps most recently performed by 

the user. This approach assumes that the user wants to remain focused on one area 

of the plan before moving to another.

Breadth-first: prefer steps that derive from the steps least recently performed by 

the user. 

2.9.2. Information Requirements

In real-world planning, the human planner often makes decisions based on criteria that 

are too complex or vague to formalize in a predicate.  These criteria are often based on 

external sources of information (e.g., reports, meetings).  For example, a SOF planner 

may want to base his selection of a rendezvous point on an overall assessment of an 

intelligence report from the relevant region, though it may be virtually impossible to 

formalize the exact set of conditions the planner is looking for within that report.  In a 

plan-authoring system, we want to be able to capture these criteria and information 

sources, and record the connection between them and the relevant elements of the plan.  

PASSAT accomplishes this through the use of information requirements.

In addition to specifying the method for expanding a task, a template may also include 

one or more information requirements.  An information requirement specifies a 

monitoring condition on an information source that may be useful for determining the 

applicability of the template, for selecting variable instantiations, or for resolving the 

template's constraints. 

Currently, information requirements are used in PASSAT to make explicit to the user the 

connection between plan elements (e.g., variables, constraints) and information sources. 

When a planner activates an information requirement in a template, the system creates a 

link between the information described in the information requirement and an element or 

elements in the plan.  When the information arrives, PASSAT calls the planner's attention 

to the relevant plan element by creating a high-priority item on the agenda to revisit that 

element.  PASSAT's current method of detecting when information has arrived is to be 

told explicitly by a user, but one could imagine more sophisticated automated sentinels
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that would, for example, monitor data sources (e.g., Web pages, databases) for specific 

updates.

For example, a user planning a SOF mission may make a tentative assignment to a 

variable ?RENDEZ-POINT based on the sketchy information available to him.  At the 

same time, he may activate an information requirement representing an intelligence 

report on the region in question and attach it to the variable ?RENDEZ-POINT. When the 

intelligence report comes in, PASSAT will notify the planner by putting the Instantiate 

Variable step for ?RENDEZ-POINT back on the active agenda, giving it a high priority, 

and highlighting the element on the planner's agenda display. 

2.10. PASSAT System 

The PASSAT system can be run on either a Windows or Sun workstation platform. There 

is an extensive user guide for the system that includes (a) instructions for downloading 

and installing PASSAT, (b) a detailed overview of the PASSAT interface, and (c) 

extended demonstrations of the core plan authoring and sketch processing capabilities.  

The demonstrations make use of a hostage rescue domain that was developed on the 

project. The domain consists of an extensive set of templates that encode standard 

operating procedures related to hostage rescue, a background ontology of generic object 

classes and instance information for a specific scenario, and a small library of predefined 

advice.
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3. Robust Plan Sketching

3.1. Overview

Automated hierarchical planning systems support a top-down model of planning focused 

on the refinement of high-level objectives to executable actions.  Human planners, in 

contrast, often combine top-down planning with a bottom-up approach that identifies 

specific tasks to be included in a final solution.  Indeed, studies have shown that 

designers tend to interleave decisions at various levels of abstraction, thus working 

opportunistically at times rather than in a purely top-down fashion (Guindon 1990).  For 

example the planners of a hostage rescue may decide where and how they will establish a 

safe haven and how hostages will be transported, without yet having selected an overall 

rescue strategy.  The selection of high-level strategy, in fact, can often be conditioned on 

such lower-level decisions.

 Within PASSAT, we developed a framework that enables a user to sketch an outline 

of a plan for a particular objective, with the system providing assistance in refining the 

outline to a full solution (Myers et al. 2003).  A sketch consists of a collection of tasks 

that (1) may be only partially specified, and (2) may occur at various levels of abstraction 

in the plan hierarchy.
3
 Within this framework, a human planner can combine 

opportunistic and top-down plan refinement in a manner that best suits his individual 

planning style.

We had previously developed an approach to plan sketching that required plan sketches 

be valid, meaning that there be at least one legal completion of the sketch relative to 

predefined planning knowledge (Myers 1997). Mismatches between human 

conceptualizations of a domain and formalized planning knowledge, however, can lead to 

situations where user sketches are uninterpretable.  On this project, we addressed the 

problem of plan sketch interpretation when the validity assumption no longer holds.    

Below we summarize our main contributions in this area, namely, the definition of 

concepts and algorithms for interpreting and repairing invalid plan sketches in a robust 

manner, and the implementation of a framework for mixed-initiative sketch repair. 

3.2. Interpreting Invalid Sketches 

Our earlier work on plan sketching introduced a notion of plan sketch compliance, which 

is based on the idea of embedding the tasks of a plan sketch within an overall solution to 

the given planning problem. In particular, each sketch task must be unifiable with some 

corresponding task in the hierarchical plan structure that constitutes the solution. Robust 

plan sketching requires a less stringent condition that can account for both  (a) user 

misconceptions about the task domain (i.e., situations where the user has incorrect 

models of when and how activities can be undertaken), and (b) background knowledge 

3
Sketching often implies a graphical medium. While our model of sketching is compatible with graphical specification 

of tasks, we considered only logical specifications.  
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that may be incorrect or incomplete.  We focused on two types of problem within 

sketches that derive from user misconceptions and faulty domain knowledge:  

Type 1: violations of constraints from the templates used to interpret a plan sketch 

Type 2: sketch tasks that do not map to any high-level goal (i.e., orphaned tasks) 

To accommodate such problems, we defined the weaker notion of maximal compliance to 

accommodate these problem types. In contrast to the original model of compliance, 

maximal compliance captures the notion of embedding a maximal subset of the original 

sketch within a plan refinement structure while minimizing constraint violations.  In this 

way, it characterizes the class of solutions to a planning problem that best reflect a given 

sketch, subject to the constraints of the background knowledge.

Ideally, a robust sketch interpretation algorithm should aim to identify one or more plan 

refinement structures that are maximally compliant. To this end, we defined an algorithm 

(see (Myers et al. 2003) for details) that could be used to generate maximally compliant 

solutions for a given sketch.  However, domain complexity may preclude finding optimal 

solutions in practice. 

3.3. Mixed-initiative Repair 

Our framework for sketch interpretation and repair could be operationalized as a fully 

automated system.  Doing so would require powerful heuristics to control search, 

however, as the overall space of possible repairs will generally be prohibitively large. 

Our interests lay more with user-centric planning aids, which led us to develop a mixed-

initiative realization of the robust sketch progressing algorithm within PASSAT.

When given a sketch, PASSAT generates possible expansions, which amount to least-

commitment plan structures that embed the sketch (or some subset of it) and all derived 

consequences.  The user may choose any of these expansions to continue planning; the 

agenda will be updated to reflect the derived set of outstanding tasks. PASSAT guides the 

human planner through the process of modifying a plan sketch to eliminate detected 

problems.  The role of the system is to identify sketch problems and possible repairs, 

while the human acts as the decision maker in navigating through the space of options. 

The framework is designed for iterative use, with a human planner incrementally refining 

a sketch in response to detected problems until he has found a satisfactory solution.   

Mixed-initiative systems require powerful and flexible interfaces to facilitate interactions 

with a user. To support mixed-initiative sketch repair, we developed two interactive tools: 

a sketch editor and a sketch space exploration aid.

Sketch Editor 

Sketch specification involves defining the tasks that comprise a sketch and their 

arguments. PASSAT provides an interactive editor to simplify this process.  With this 

editor, the user first selects a set of tasks to be included in the sketch, and then specifies 

the arguments for those tasks. Allowed arguments consist of variables and all instances of 
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the corresponding type for that argument. This type of structured plan editor eliminates 

the possibility of syntactic mistakes (e.g., undefined tasks or arguments, use of 

inappropriate argument types) that can be a source of great frustration to a user.   In doing 

so, it allows the user to focus on the conceptual design for a sketch. 

To help the user focus on semantically relevant choices, the sketch editor incorporates 

context-sensitive presentation of the syntactically valid options to the user for both task 

and argument selection. 

Task selection: The editor exploits linkage among templates to limit task selection 

for a sketch to tasks that could possibly appear in any expansion of the ‘objective’ 

currently under consideration. This filtering helps to eliminate many irrelevant 

options, thus both reducing clutter from the task selection menu and preventing 

the user from pursuing many fruitless avenues.  

Argument selection:  It is often the case that many candidate values for a task 

argument fail to satisfy the preconditions of any templates that could be applied to 

the task.  Eliminating such values from consideration prevents exploration of 

deadends.  However, one design requirement for PASSAT was the flexibility to 

let a user think ‘out of the box’.  In particular, PASSAT’s constraint reasoning 

allows certain constraints to be overridden at the user’s discretion.  For this 

reason, the possible values presented to the user are flagged to indicate whether or 

not they satisfy all associated constraints.

Sketch Space Exploration Tool 

The space of possible expansions for a given 

sketch can be dauntingly large, especially 

when interpretation is tolerant of the Types 

1 and 2 faults defined above.  To support a 

user in navigating this large space, we have 

developed a sketch space exploration tool 

that aids a user in managing the sketch 

refinement process (see Figure 6). The tool 

is organized around a tree structure that 

reflects the space of sketches and expansions 

that a user has explored.  The root of the tree 

corresponds to the initial sketch; it contains 

a descendant node for each expansion of the 

sketch. Each revision of an expansion in turn 

generates a descendant sketch node, from 

which a recursive structure emerges.  

 For a sketch node, the user can choose to 

generate expansions all at once or 

incrementally.  For an expansion, a user can 

view the template structure and the detected 

Figure 6. Sketch Exploration Tool 



19

problems.  Expansions with minimal problems and minimal numbers of expected repairs 

to address those problems are highlighted. (One repair could fix multiple problems; thus, 

these values can differ for a given expansion.)

3.4. Discussion 

Plan sketching provides a powerful mechanism for developing complex plans.  Plan 

sketching can help a user quickly outline the key aspects of the plan, capitalizing on the 

system to fill in less important details around the sketch. In addition, it can serve as the 

basis for an exploratory process that allows a user to consider a variety of options when 

developing a plan.

For plan sketching technology to be useful in practice, it is imperative that it be robust 

both to flaws in the sketch itself and to inadequacies in the underlying planning 

knowledge used to interpret the sketch. Our work has defined an approach to robust plan 

sketch interpretation that accommodates two categories of problem: violated applicability 

conditions and extraneous actions.  This approach has been embodied within a mixed-

initiative plan sketching framework in which a system identifies options for repair while 

a user selects candidate interpretations and repairs. 

We believe that our work presents substantial progress toward a practical sketch-

processing facility. However, there are still areas for future work. One key topic for 

exploration is the design of summarization and comparison tools for sketches and 

expansions, which would help a user better understand the structure of the sketch space.  

A second area is to define techniques for generating qualitatively distinct expansions that 

provide the user with some sense of the range of possible options for a given planning 

problem. Finally, it would be useful to broaden the definition of a sketch to include 

temporal information.  Doing so would require extensions to the sketch interpretation 

algorithms to match partial orders of tasks; currently, the matching is done separately for 

individual sketch tasks.
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4. Policies

4.1. Overview

When developing a plan, it is often necessary to take into account high-level guidance 

that is distinct from the actual objectives to be attained.  Examples of such guidance 

include rules of engagement (e.g., There should be no helicopter-based infiltrations 

within 1 mile of a school, hospital, or church), commander's intent (e.g., The infiltration 

mission should involve no more than 2 Green units), or general strategic requirements 

that an individual planner wants to impose on a given plan (e.g., Don’t use more than 3 

landing zones).  We use the term policy to refer to guidance of this type.

We developed a module within PASSAT to support the use of policies during mixed-

initiative plan development. Our accomplishments included the design of an appropriate 

language for the representation of policies, and the development of an incremental 

planning-time policy verification tool linked to PASSAT’s plan authoring capabilities. 

Verification of policies involves monitoring the evolving plan content and user edits to 

identify operations that would lead to violations. Violations could be triggered either 

directly by a user modification (e.g., template application, variable instantiation) or 

indirectly through system constraint propagation or sketch processing.  Within PASSAT, 

both actual and potential violations (for changes under consideration by the user) lead to 

notification. In addition, the system agenda is updated to track any actual policy 

violations.  As with other forms of constraint violations within PASSAT, the user can 

choose to accept such violations, thus making policies relaxable under user discretion.

Plan policies within PASSAT are similar in nature to the concept of advice for automated 

planning systems that we developed in our previous work on the Advisable Planner 

(Myers, 1996; Myers, 2000). In particular, both are a form of declarative guidance 

designed to shape plan content.   Advice within the Advisable Planner was designed to 

influence the operation of a fully automated planning system.  PASSAT policies, in 

contrast, serve as guidance for both user and system activities (hence, the use of the term 

policy rather than advice). This mixed-initiative model of planning led to a validation-

oriented model for policies, in contrast to the enforcement-oriented model within the 

Advisable Planner.   

Although our policy work in PASSAT leverages concepts from the Advisable Planner, 

this differing treatment of the guidance required new control regimes for testing advice 

that are sensitive to usability issues.  We also introduced advances in the policy 

framework that extend and improve the advice language from the Advisable Planner. One 

key innovation was the articulation of aggregate policies, which reference the entire plan 

structure rather than being limited to the local problem-solving context.   A second 

innovation was a generalized domain metatheory, which is used as the basis for 

specifying policies. 



21

The remainder of this section introduces our domain metatheory, summarizes the types of 

plan policy developed within PASSAT, describes our policy validation techniques, and 

summarizes the impact of the work. 

4.2.  Domain Metatheory

As with advice in the Advisable Planner, our language for representing policies builds on 

three components: the underlying domain theory, a domain metatheory, and the 

connectives of first-order logic. 

A standard domain theory for an agent consists of four basic types of element: individuals

corresponding to real or abstract objects in the domain, relations that describe 

characteristics of the world, tasks to be achieved, and templates that describe available 

means for achieving tasks.  A domain metatheory defines semantic properties for domain 

theory objects. These properties can be used to express preferences among otherwise 

equivalent options; they also enable description of activity at a level that abstracts from 

the details of an agent’s internal representations. As discussed in (Myers 2000), a 

metatheory can provide a powerful basis for supporting user communication.  The main 

concepts within our metatheory for plan policies are features and roles defined for agent 

plans and goals (similar to those of  (Myers 1996)).   

A template feature designates an intrinsic characteristic of a template that distinguishes it 

from other templates that could be applied to the same task.  For example, among 

templates for route determination, there may be one that is OPTIMAL but SLOW with a 

second that is HEURISTIC but FAST; each of these attributes could be modeled as a feature. 

Although the two templates are functionally equivalent, their intrinsic characteristics 

differ significantly.  Features provide the means to distinguish among such operationally 

equivalent alternatives. 

A template role describes a capacity in which a domain object is used within a template; 

it maps to an individual variable within a template.  For instance, a route determination 

plan may contain variables location.1 and location.2, with the former corresponding to 

the START and the latter the DESTINATION.  Roles provide a semantic basis for describing 

the use of individuals within templates that abstracts from the details of specific variable 

names. Roles also provide the means to reference a collection of semantically linked 

variables that span different templates (i.e., START roles may occur in multiple templates). 

The metatheory within the Advisable Planner was limited to features and roles defined 

for plan templates.  Within PASSAT, we further support the definition of features and 

roles for tasks.  This extension simplifies the process of defining a metatheory for a 

domain.  In particular, roles and features can be specified ‘one time’ as part of task 

definitions, rather than being repeated with each occurrence of the task within a planning 

template.  It turns out to be valuable, however, to retain the ability to specify roles and 

features on templates; doing so enables the use of context-specific features and roles that 

are specialized to the particular problem-solving strategy embodied within a given 

template. 
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4.3. Types of Plan Policy 

We support two types of policy within PASSAT: role and aggregate.

4.3.1. Role Policies

A role policy either prescribes or restricts the use of domain entities for filling certain 

capacities in the plan. Role policies are characterized by the schema: 

<Use/Don't Use>  <objects> in <roles> for <context-activity>

In general, a role policy consists of one or more roles, a role-fill constraint, a context 

activity, and a polarity indicating whether the policy is prescribing or prohibiting the role-

fill. For example:  

 Only choose infiltration landing zones that are within 5 miles of the infiltration target

Here, the context activity is defined as tasks with feature Infiltration. The policy 

dictates that the fillers for the roles Landing-Zone and Infiltration-target be

within 5 miles of each other. 

4.3.2. Aggregate Policies 

Aggregate policies are defined in terms of six values: role, role-constraint, attribute, 

aggregation-function, test-relation, and test-value.

Aggregation is with respect to the set of fillers for role that satisfy the designated role-

constraint.  An aggregation value is produced by first selecting the designated attribute

for each object (if one is specified) or the object itself (if no value is specified). The 

aggregation-function is applied to this set to define an aggregation value.  The policy 

prescribes that this aggregation value must satisfy the test-relation relative to the defined 

test-value.

For example, the aggregate policy “Use no more than 1 Green-Unit as an infiltration 

team” would be defined as 

Role: Infiltration-team 

 Role-constraint: ((IS-TYPE INFILTRATION-TEAM GREEN-UNIT) 

 Attribute: none 

 Aggregation-function: SIZE 

 Test-relation: < 

 Test-value: 1

Aggregate policies are valuable for expressing restrictions that amount to a form of 

global measure for a plan.  Such measures often involve limits on resource usage, time 

bounds, and plan size. 

4.4. Policy Validation 

Our approach to validation for role policies builds substantially on previous algorithms 

from the Advisable Planner.  However, our implementation was notably different because 
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of the need to accommodate mixed-initiative planning (in contrast, the Advisable 

Planner’s focus is on providing guidance to direct a fully automated planner).  In 

particular, we introduced a ‘preprocessing phase’ that performs preliminary checking of 

policies when the user is considering possible options for extending a plan (i.e., either 

template application or variable instantiation).  This proactive checking identifies 

possible policy violations that might arise for each of the choices under consideration by 

the user, thus enabling a user to avoid triggering a violation and then later having to take 

steps to undo it. 

Aggregate policies represent a technical innovation over our previous work. One key 

technical challenge that they introduce is the requirement for a mechanism to efficiently 

track global plan changes.  We implemented an incremental mechanism for policy 

verification that can track the status of aggregate policies by monitoring individual plan 

changes as they occur, thus avoiding expensive global rechecking of aggregate policies 

for the entire plan. 

The use of task-based roles and features (as opposed to just template based) also required 

modifications over the original Advisable Planner algorithms.  In particular, 

consideration of a particular template for application needs to take into account the new 

subtasks and their metatheoretic properties when checking policies. 

4.5. Summary 

Plan policies provide a powerful mechanism for defining, tracking, and enforcing high-

level guidance that should shape the content and form of a plan.  They provide the means 

by which to readily incorporate both external constraints on the plan (e.g., commander’s 

intent, rules of engagement) and to help an individual planner enforce his own high-level 

design criteria.

Our contributions in this area consist of the definition of a powerful language for 

expressing policies that are relevant to shaping plan content and the design of verification 

techniques that are linked into the mixed-initiative plan authoring framework.   Together, 

these provide the basis for an effective policy framework.   

We see three areas for future work on plan policies: 

Role and aggregate policies represent two useful types of policy but others are 

possible.  For example, the Advisable Planner supports ‘method advice’, which 

provides a way to express recommendations on types of templates to apply in 

designated contexts (e.g., use a covert (rather than noncovert) operation).  For a 

particular domain, it would be useful to work with a set of experts to determine 

what would constitute a comprehensive policy language that covered their full set 

of requirements. 

Our policy verification capability within PASSAT assumes that all policies are 

defined at the start of a planning session.  Ideally, users would be able to specify 

policies throughout the planning process and have them checked relative to the 

current plan.  
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We did not develop a tool for specifying policies as part of our work on this 

project. Instead, users of PASSAT must select from a library of predefined 

policies. Predefined policies make sense for applications where there would be a 

limited set of higher-level constraints that may be imposed on the planning 

process.  In general, however, a user should have the ability to define situation-

specific policies as the need arises.  Technologies such as Constable 

(http://www.isi.edu/ikcap/constable/publications.html), another 

Active Templates effort, provide suitable platforms on which to build this type of 

policy specification tool. 
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5. Qualitative Causal Reasoning 

Our work on qualitative causal reasoning focused on developing a practical, user-oriented 

framework for reasoning about plans that does not require comprehensive background 

models for possible actions.  In particular, we sought to provide mechanisms for 

answering the following important questions: 

A. What role does a given action, constraint, or assumption play in a plan? 

B. What impact would a given change have on a plan?

To this end, we defined a qualitative approach to reasoning about plan structure that 

builds on (a) a set of qualitative and casual-link plan relations that characterize key 

interactions among plan components, and (b) an accompanying calculus for reasoning 

qualitatively about the effects of changes on a plan. As will be seen below, our qualitative 

approach trades the precision of traditional causal link methods for simplicity and ease of 

use.

Here, we describe the motivation for this work and the core relations within our model.  

Full technical details can be found in (Myers 2003); Appendix A includes a copy of this 

document.  

5.1. Background

Automated planning algorithms embody a theory of causality grounded in the linking of 

enabling effects of actions or initial world conditions with preconditions of subsequent 

actions (Weld 1999).  While the design and algorithmic foundations for this approach are 

well understood, the approach has several limitations.  First, the generation of causal plan 

structures by automated planning systems requires comprehensive causal models that 

describe for every action its preconditions (i.e., the conditions under which it could be 

applied) and its postconditions (i.e., the conditions that result from execution of the 

action).  Second, the models must be completely correct in order to support the causal 

reasoning required for plan generation.  Even the smallest of errors or omissions can lead 

to invalid plans, or the inability to generate any plan. 

Because of these strict requirements, the standard approach to causal reasoning within AI 

planning systems is ill suited to interactive planning environments in which users may be 

constructing ad hoc plans containing actions that may not have extensive background 

theories.  Imposing the requirement that a human planner specify a full causal structure 

for his plan would impose a tremendous documentation burden that most users are 

unlikely to satisfy, due to both a lack of modeling expertise, and an unwillingness to 

invest the time required to justify the low-level details of his choices.

To illustrate, consider the simple plan fragment in Figure 7, which is drawn from a 

domain focused on noncombatant evacuation operation (NEO) missions.  The figure 

presents the three actions in the plan (in bold) along with a full causal annotation of the 

type required for causal link reasoning within an AI planning system.  These annotations 

explicitly note any required preconditions above the action and postconditions below the 
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action.  Actions and effects are represented in terms of an action/effect name followed by 

a list of parameters of the form ?param-name = param-value, indicating the parameters 

for the action/effect and their bindings.  Arrows denote causal links from enabling 

conditions to required preconditions.

Clearly, the fully annotated view of the plan contains much more information than would 

be practical for a human planner to provide for plans that contain hundreds or thousands 

of actions (which is typical of real-world domains such as military planning, crisis action 

planning, and space mission planning).  Although such information is necessary for an 

automated planner, much of this information would be of little value to a human planner 

because it is obvious from the plan structure (e.g., knowing that a LOAD operation 

results in the cargo then being LOADED on the chosen vehicle is a form of bookkeeping 

that is unlikely to interest the human planner).   On the other hand, certain of these 

relationships may be important to understanding key dependencies within the plan, or 

could encode critical conditions whose monitoring is essential to ensure plan viability in 

the face of unexpected changes. 

Figure 7. Evacuation Plan Fragment with Full Casual-Link Annotations 

5.2. Qualitative Reasoning about Plans 

Are traditional causal-link models necessary for meaningful analysis of plans?   We 

believe the answer to be no. More specifically, we believe that much (but not all) of the 

value of these complex causal models can be obtained through simpler qualitative models 

that capture commonsense notions of intraplan relationships.   The basic idea is to trade 

the detail and precision of the formal causal models for an approach that is both easier to 

formulate and to reason with.   In particular, a human planner would be able to specify 

such relations as part of the plan authoring process. This simpler approach would still 

enable answers to the questions (A) and (B) above, although in qualitative rather than 

purely logical terms. Furthermore, as we argue below, the models of causality embraced 

by the AI planning community are unnecessarily narrow, because of their evolution from 

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

LOAD(?VEH=UH60-A?CARGO=Evacuees)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

At(?PLACE=Embassy ?VEH=UH60-A)

At(?PLACE=Embassy ?OBJ=Evacuees)

At(?PLACE=Embassy ?VEH=UH60-A)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

At(?PLACE=Camp1 ?VEH=UH60-A)

At(?PLACE=Camp1 ?OBJ=Evacuees)

At(?PLACE=Base1 ?VEH=UH60-A)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

LOAD(?VEH=UH60-A?CARGO=Evacuees)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

At(?PLACE=Embassy ?VEH=UH60-A)

At(?PLACE=Embassy ?OBJ=Evacuees)

At(?PLACE=Embassy ?VEH=UH60-A)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

LOADED(?VEH=UH60-A?CARGO=Evacuees)

At(?PLACE=Camp1 ?VEH=UH60-A)

At(?PLACE=Camp1 ?OBJ=Evacuees)

At(?PLACE=Base1 ?VEH=UH60-A)
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the structures required for fully automated planning. In particular, they do not capture 

notions of plan dependency that are important for mixed-initiative planning systems. 

On this project, we developed a specific technical approach that supports this type of 

qualitative plan reasoning. We defined a set of qualitative plan relations, as well as a 

calculus for reasoning qualitatively about the effects of plan changes that considers both 

qualitative and standard logical plan relations.  By covering both types of relation, the 

calculus can both capitalize on traditional logical models of causality when available, and 

also produce meaningful results for partial, qualitative models of plan relations.   

5.3. Plan Relations for Qualitative Reasoning 

In this section, we present a candidate set of relations to support qualitative reasoning 

about the effects of plan changes.  Ideally, a system that reasons about causal effects 

within plans should combine both causal link and qualitative information about plan 

relationships.   For this reason, our model contains relations of both types. 

We adopt a model of plans that contains three types of element: 

 Action (denoted by A): an activity that can be undertaken  

 Effect (denoted by E): a condition (either to be achieved, the expected result of 

executing an action, or a property of the initial world state) 

 Parameter (denoted by P): an argument to an action or condition 

We use the symbol Obj (i.e., plan object) to denote an arbitrary plan element from any of 

the above types.

A plan relation is defined between a source object and a target object.  We represent a 

qualitative relation using the syntax: 

Source-Obj  Target-Obj

5.3.1. Causal Link Relation 

The causal-link relation (Figure 8), the standard relation within most automated planning 

systems, indicates that the target effect is dependent on the source effect.

   Causal-link: {Effect}  { Effect } 

Figure 8. Casual Link Relation 

5.3.2. Qualitative Relations 

Figure 9 summarizes our candidate set of qualitative relations.  Broadly speaking, the 

qualitative relations can be separated into two categories: temporal (QR1 – QR3) and 

logical (QR4 – QR5).
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QualR1. Precedes: {Action | Effect}  {Action | Effect} 

QualR2. Necessary-for: {Action | Effect}  {Action | Effect} 

QualR3. Supports: {Action | Effect}  {Action | Effect} 

QualR4. Parameter-dependence: {Parameter}  {Parameter} 

QualR5. Condition-dependence: {Effect}  {Action | Effect | Parameter} 

Figure 9. Qualitative Plan Relations 

5.3.2.1. Qualitative Temporal Relations

The qualitative temporal relations capture the notion that a given action or effect in a plan 

must precede some other action or effect, possibly due to some semantic relationship 

between the elements.   We consider three types of temporal relation: precedes,

necessary-for, and supports.

The precedes relation captures the notion that the specified source action or effect should 

take place before the specified target action or effect, without providing any indication of 

why.  This type of relation can be used to capture a preference for performing activities in 

some designated order when there is no necessary reason for that order.   For example, 

consider the actions of preparing an evacuation site and flying evacuees to the evacuation 

site.  Although it would be possible to perform those actions in parallel, a given planner 

may have a preference for completing the preparation prior to the start of the airlift of the 

evacuees, possibly to enable a delay of the airlift in the event of problems with the 

preparation.

 The necessary-for and supports relations specialize the precedes relation to capture 

semantic motivations for the ordering relationship. Necessary-for captures the notion that 

a given action or effect must occur before a designated action or effect in order to enable 

the target plan element. For example, it would be necessary-for evacuees to be marshaled 

to an assembly point before they could be loaded onto an evacuation aircraft.  In essence, 

the necessary-for relation constitutes a qualitative counterpart of the quantitative causal-

link relation. Changes could impact plan objects linked by a necessary-for relationship in 

two ways.  First, delays to necessary activities will propagate.   Second, failure of a task 

that is necessary-for another task would likely jeopardize the latter.

The supports relation indicates that the source action or effect contributes to the target 

action or effect in some way, but is not critical to its existence. For example, a CAP 

mission may support a given evacuation activity, but not be essential to its undertaking  

Hence, if the fighter involved with the CAP were redirected to support a different action, 

the evacuation process should not be jeopardized.  Source objects for supports relations 

correspond to ‘redundant’ actions or effects that, while unnecessary, lead to improved 

plan robustness or quality.  Standard causal link models do not explicitly support such 

redundant objects within a plan. 
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5.3.2.2. Qualitative Logical Relations 

The qualitative logical relations QR4 and QR5 capture the idea that there is some sort of 

dependency between the source and target elements such that a change to the source 

could impact the target. However, the precise nature of that relationship is not captured 

algebraically in terms of a deductive specification or mathematical formula.  Such 

situations arise frequently in planning situations, where many factors that are problematic 

to formalize come into play when making choices.   These factors could include 

conditions that are too complex to codify (i.e., a form of the qualification problem) or 

subjective preferences that vary among different human planners. 

For example, the choice of assembly point in an evacuation plan will necessarily impact 

the type of aircraft that can be used for transporting evacuees (e.g., a small helicopter 

may be necessary for evacuation from an embassy, while a larger aircraft could be used at 

a football stadium).  However, there is no hard-and-fast rule for determining what type of 

aircraft should be used for a particular location.   Similarly, the security level of the 

surrounding area may constrain the choice of assembly point, but generally will not 

uniquely determine it. 

Qualitative logical relations can be designated between plan parameters (QR4), or 

between plan effects and any type of plan component (QR5). The relationship between 

the choice of assembly location and transport aircraft in the example above corresponds 

to a parameter-dependence relation, while the relationship between the security level and 

choice of assembly point corresponds to a condition-dependence relation. 

We note that the qualitative logical relations could be made ‘quantitative’ by associating 

definite constraints with them.  For the parameter-dependence relation, these constraints 

would be in the form of a set of equations linking the two parameters.  We introduce the 

term parameter-constraint relation to refer to this specialization of the parameter-

dependence relation.  A comparable condition-constraint relation could also be defined.

5.4. Example 

To illustrate the use of the qualitative relations for planning, consider the plans in Figure 

10 and Figure 11 for a simple evacuation operation.  These plans are designed to achieve 

the two goal conditions Prepared(Camp1) and At(Evacuees Camp1) based on the 

operators in Figure 12. Each of the plans includes conditions from the initial state upon 

which actions and effects in the plan depend, as well as the effects that constitute the 

desired goal state. To simplify reference, each action in the plan is labeled with a unique 

identifier (e.g., N1).

The plan in Figure 10 corresponds to a solution that an automated causal link planner 

might produce for this problem.  It includes a full causal link annotation that documents 

how action precondition is supported by an earlier effect in the plan. 

The plan in Figure 11 represents a solution that a human planner might construct using 

some kind of plan authoring tool. It contains all of the actions in Figure 10 plus one 

additional action: a Patrol action (N7) that provides additional security for the sector to 
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which the evacuees will be moved.  According to the logic of the domain operators, this 

action is redundant because it does not establish any effects that are required within the 

plan.  However, it is typical for human planners to build such redundancy into plans to 

provide additional safeguards in the face of unexpected events.    

The plan in Figure 11 also contains a candidate set of both quantitative and qualitative 

relations that document what the user might view as the key dependencies within the 

plan.  The key differences between this hybrid set of plan relations and the causal link 

relations in Figure 10 are as follows: 

Causal-link relations in Figure 11 have been limited to dependencies on initial 

state conditions that might be expected to change and hence may require 

modifications to the plan (e.g., the security of key locations and the position of 

the vehicle to be used for transporting the evacuees) and important intermediate 

effects of action (e.g., the evacuees remain at the embassy until they are loaded 

onto the transport vehicle). In particular, static initial conditions and unimportant 

intermediate effects of actions have been omitted. 

The hybrid annotation replaces certain of the quantitative causal-link relations 

with qualitative necessary-for relations, indicating that it is essential for the 

source activity to precede the target activity in the plan but not documenting the 

effects that link the actions.  From the user’s perspective, these effects are 

obvious (e.g., the aircraft has to be loaded before it can be unloaded) and so 

documenting them explicitly is of little value. 

The qualitative annotations include a precedes relation from node N6 to node N4,

indicating a (noncausal) preference for ordering those two actions, although the 

ordering is not necessary for the plan to succeed.  

A condition-dependence relationship has been added from the predicate 

#Evacuees(25) in the initial world state to the parameter ?PLACE in N1 where the 

evacuees are to be assembled. This relation reflects the fact that the choice of 

assembly location is dependent on the number of evacuees; should the number 

change, the choice may need to be revisited.  
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Assemble(?GROUP=Evacuees 

?PLACE=Embassy)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

Initial State

Evac-Area(Sector1)

In (Embassy Sector1)

Secure(Embassy)

At(UH60-A  Base1)

#Evacuees (25)

Secure(Camp2)

Secure(Camp1)

At(?GROUP=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Embassy)

At(?OBJ=Evacuees ?PLACE=Embassy)

¬At(?VEH=UH60-A ?DEST=Base1)

At(?VEH=UH60-A ?DEST=Embassy)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)

¬ At(?OBJ=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?DEST=Embassy)

¬At(?VEH=UH60-A ?DEST=Embassy)

At(?VEH=UH60-A ?DEST=Camp1)

Evac_Area(?SECTOR=Sector1)

In(?PLACE=Embassy ?SECTOR=Sector1)

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)

N1
N2

N3

N4

Causal Link
Goal State

Prepared(Camp1)

At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

At(?VEH=UH60-A ?PLACE=Camp1)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)

AT(?OBJ=Evacuees ?DEST=Camp1)

N5

Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)

Prepared(?PLACE=Camp1)

N6

Figure 10. Evacuation Plan with a Complete Set of Casual Link Relations 

Initial State

Evac-Area(Sector1)

In (Embassy Sector1)

Secure(Embassy)

At(UH60-A  Base1)

#Evacuees (25)

Secure(Camp2)

Secure(Camp1)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

N2

N3

Goal State

Prepared(Camp1)

At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

N5

Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)
N6

Precedes
Necessary-for
Supports

Parameter Dependence
Causal Link

Condition Dependence

Assemble(?GROUP=Evacuees 

?PLACE=Embassy)

N1

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

N4

Patrol(?SECTOR=Sector-5)

N7

At(?OBJ=Evacuees ?PLACE=Embassy)

At(?OBJ=Evacuees ?PLACE=Embassy)

Figure 11. Evacuation Plan with Qualitative and Casual Link Relations 
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A parameter-dependence relationship has been added from ?PLACE in N1 to

?Veh  in N2 and a condition-dependence relation added from #Evacuees(25)  in 

the initial world state to ?Veh  in N2. These relations show that the choice of 

vehicle depends on both the number of evacuees and their assembly location.

There is a supports relation from N7 to N6 in the qualitative view, documenting 

that the Patrol action is being performed in service of the Prepare action. No link 

between these nodes is possible in the causal link view because there is no 

enabling relationship between effects produced by N7 and required by N6. A

parameter-dependence relation has been added from the ?PLACE parameter in 

N6 to the ?SECTOR variable in N7 indicating that the choice of patrol area 

depends on the evacuation site.   In this case, the relationship could be expressed 

algebraically, i.e., by adding the annotation IN(?PLACE ?SECTOR) to the 

parameter-dependence relation (thus resulting in a parameter-constraint relation). 

Action: Assemble(?GROUP ?PLACE) 

Preconditions: Secure(?PLACE), Evac-Area(?SECTOR), In(?PLACE ?SECTOR) 

Effects: At(?GROUP ?PLACE) 

Action: Fly (?START ?DEST  ?VEH) 

Preconditions: At(?VEH ?START)

Effects: At(?VEH ?DEST), ¬At(?VEH ?START) 

Action: Load(?VEH ?OBJ  ?PLACE) 

Preconditions: At(?VEH ?PLACE), At(?OBJ ?PLACE)

Effects: Loaded(?VEH ?OBJ), ¬At(?OBJ ?PLACE) 

Action: Unload(?VEH ?OBJ  ?PLACE) 

Preconditions: At(?VEH ?PLACE), Loaded(?VEH ?OBJ)

Effects: At(?OBJ ?PLACE), ¬Loaded(?VEH ?OBJ) 

Action: Prepare(?PLACE) 

Preconditions: Secure(?PLACE)

Effects: Prepared(?PLACE) 

Action: Patrol(?PLACE)

Effects: Prepared (?PLACE) 

Figure 12.  Evacuation Planning Operators 
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5.5. Properties of the Model 

The qualitative model trades the precision of exhaustive causal links for simplicity and 

ease of use.  Indeed, there is a natural abstraction from an exhaustive causal link structure 

to ‘corresponding’ qualitative models that involves replacing every causal-link relation 

with a precedes or necessary-for relation.  We refer to a plan transformed in this manner 

as a ‘qualitative abstraction’ of the original.

While the qualitative relations lose precision over the causal approach, they offer 

several advantages.  First, they are simpler and more intuitive to specify.  This 

characteristic makes them better suited for use in a mixed-initiative planning 

environment. A second advantage relates to expressivity:  there are relationships that can 

be modeled in the qualitative framework that are not supported by POCL-style causal 

links or parameter constraints.  In particular, the supports relation enables the description 

of a connection between plan objects that is not essential for plan correctness (as 

described above).  As well, the precedence relation allows the expression of ordering 

information independent of causality.  Furthermore, the condition-dependence and 

parameter-dependence relations enable ill-defined connections between plan objects to 

be expressed; this ability is useful when the precise logical or mathematical relationship 

is not known or not easily formalizable, yet there is still a desire to document some 

relationship between them. 

5.6. Sources for Causal Relations 

Our motive for investigating qualitative relations is to enable reasoning about plan 

changes within a mixed-initiative planning environment that combines human and 

automated planning skills.  Within this context, several sources would contribute to the 

set of causal relations defined within a given plan.  First, a background set of templates 

could capture both quantitative and qualitative causal relations for ‘standard operating 

procedures’ that arise frequently in practice.  Such relations would be included in the core 

template definition by the author of the template.  Second, the human planner that is 

driving a specific planning task could contribute additional relations.  Third, some 

relations could be derived from a general-purpose background theory that describes 

general properties of a domain.  Finally, some sort of learning mechanism could be 

applied to hypothesize qualitative relations from a user-authored plan, yielding a baseline 

that a user could then modify appropriately (e.g., along the lines of (El Fattah and Dyer 

2001)).

5.7. Summary 

Our qualitative model trades the precision of POCL-style causal links for simplicity and 

ease of use.  In particular, qualitative reasoning about the effects of changes on plans has 

several advantages over standard logical/deductive approaches.  First, qualitative 

reasoning does not require comprehensive and correct causal theories. However, while 

qualitative inferences can be drawn from incomplete models, more complete models will 

yield more informative results.  Second, qualitative relations are simpler and more 
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intuitive to define, making it possible for users to annotate plans with qualitative relations 

that reflect their specific needs and interests.  In contrast, traditional deductive 

approaches require sophisticated models that have proven to be difficult for users to 

formulate.   Third, qualitative models include relationships that do not require complete 

formalization of concepts, making them relevant for situations where precise 

dependencies among plan elements cannot be articulated. 

One of the problems with the qualitative framework described above is that it is derived 

from simple commonsense notions of plan relations and interactions.  Future work in this 

area should focus on defining a formal semantic model that relates the qualitative 

relations to POCL-style plan annotations. Such a model would enable us to ground the 

intuitions behind the qualitative relations in well-understood, clear structures. 
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6. CODA: Coordination of Distributed Activities 

Effective coordination of distributed human planners requires timely communication of 

relevant information to ensure overall coherence of activities and the compatibility of 

assumptions. The CODA system (Coordination of Distributed Activities) provides 

directed information dissemination as a way of improving coordination among distributed 

human planners (Myers, Jarvis and Lee 2002). 

An initial prototype CODA system was developed on a jump-start effort to this project 

(supported by DARPA Contract No. F30602-97-C-0067). Our work on CODA for this 

contract focused on the following enhancements to that original framework. 

Extension of the preliminary CODA proof-of-concept system into a transitionable 

system 

Integration of CODA with appropriate tools from the Active Templates program 

Development of a set of complementary interfaces for PAR specification 

Publication of two technical papers describing the CODA framework 

Following a brief overview of the CODA technical approach, details of the first three of 

these areas are provided below. 

Fred Bobbitt, Warren Knouff, and Kelly Snapp provided excellent feedback to us during 

our CODA development efforts on this contract, especially with regard to user 

requirements and interface design.  We are grateful for their assistance. 

6.1. CODA Approach 

CODA targets applications where distributed human planners are assigned responsibility 

for portions of a global shared plan. Their individual subplans, while somewhat 

independent, are expected to have a medium degree of coupling through the need to 

reflect coherent strategy, to coordinate actions, and to share limited resources. 

Within CODA, an individual planner declares interest in different types of plan changes 

that could impact his local plan development. These declarations, called plan awareness 
requirements (or PARs), would be registered with all other planners who are contributing 

components to the overall plan. Each individual user develops his plan with a CODA-

compatible plan authoring system, publishing the results to a central plan server when his 

plan is mature enough to be reviewed by other planners. A user can initiate the checking 

of the PARs that he has registered at any time, and will receive notification of matches to 

plan components that have been published to the central plan server.  CODA could be 

linked to a range of manual, semi-automated, and fully automated planning tools.  In this 

project, it was connected to a specific plan editor, the SOFTools Temporal Planner (GTE, 

2000), which supports the graphical editing of special operations plans. 

CODA supports two classes of PARs.  
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1. Plan-state PARs describe conditions of a plan and are modeled in terms of a well-

formed formula in the plan query language.  For example: There is an arrival to 

staging base Gold scheduled for after 8 PM.  Matching of a plan-state PAR 

occurs when a modification results in a plan that satisfies the associated plan 

query.

2. Plan transition PARs describe changes between two plan states.  We distinguish 

several categories, based on the nature of the underlying plan changes: 

Instance Creation PARs are used to declare interest in the addition of an 

object to a plan that satisfies stated conditions.  For example: Addition of 

decision points related to weather calls.

Instance Deletion PARs are used to declare interest in the removal of an 

object from a plan that satisfies stated conditions.  For example: Elimination 

of a landing zone south of the embassy. 

Instance Modification PARs are used to declare interest in the modification 

of an object that satisfies stated conditions. For example:  Changes to 

movements by the 4
th

 platoon.

Attribute Modification PARs specialize Instance Modification PARs to 

changes to a specific attribute of a plan object, possibly satisfying stated 

change conditions.  For example: Delays of  > 1 hour in the expected time to 

secure the church. 

Aggregate Modification PARs can be used to declare interest in changes to 

an intensionally defined collection of objects.  The change may be to 

membership in the collection, or to some aggregation value defined over the 

collection.  As an example: Decrease of > 2 in the number of fire-support 

aircraft.

Figure 13 presents the CODA architecture. Within the context of a global plan, 

individuals work independently to produce local plans for their assigned tasks.  Plans are 

developed using a structured plan editor, which supports a broad range of plan 

manipulation capabilities.  User interactions with the plan editor are tracked by an    

observer module, which maintains a complete history of editing operations.  As events 

are logged, a semantically grounded representation of the local plan is built within 

CODA.  This internal representation can be annotated and used for reasoning, 

independent of the plan editor GUI. 

The matcher provides the main inferential capability within CODA, being responsible for 

linking observed plan changes to declared PARs.  The matching process may involve 

reasoning with a background theory, whose role is to bridge the gap between low-level 

plan edits and PARs expressed in high-level languages.  When matches are detected, 

notification is sent to the local planner who registered the matched plan awareness 

requirement.  
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Figure 13. CODA Architecture 

6.2. From Proof of Concept to Transition-Ready System 

The CODA system developed on the jumpstart project (version 0.5) was designed as a 

proof-of-concept system to demonstrate the potential of the PAR-based approach to 

information dissemination among distributed planners. The initial system was limited in 

scope, being focused primarily on demonstrating the declaration and matching of PARs.  

One objective on this contract was to develop the CODA system into a mature system 

that could be transitioned to the SOF community.  Here, we summarize the tasks that we 

performed to meet that objective. 

6.2.1. Matching Modes 

The original CODA system provided immediate notification of PAR matches.  In 

particular, PARs were checked after every plan edit operation, thus providing planners 

with real-time notification of relevant plan changes.  Immediate notification of this type 

would be suitable for the end stages of planning (when plans are mostly stable and 

changes are significant), or during execution. 

For earlier stages of plan development, frequent and wide-ranging changes to plans 

would be expected; real-time notification of matches during early plan development 

would be counterproductive.  For this reason, we developed a second mode of matching 

called on-demand, for which matching information is provided only in response to an 

explicit user request.  Such requests produce summaries of matches for the current plan 

relative to a designated ‘checkpoint’ plan. On-demand matching can support coordination 

of distributed planners earlier in the planning process by enabling a given planner to 

periodically check for changes by other planners that could impact his own efforts. The 

checking process for on-demand matching need not consider the intervening plan 

modifications, since the match semantics compare the original and current plans. 
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6.2.2. Distributed Architecture  

Within the original proof-of-concept system, a single user played the role of both a local 

planner engaged in planning and a remote planner who registers PARs.  That initial 

design was chosen to expedite development of a basic demonstration system but clearly 

was not adequate. On this project, we implemented a distributed version of the system 

that allows multiple users of CODA to coordinate on plan development across 

geographically distributed areas.

Our distributed framework relies on two technologies developed outside of SRI.  First, it 

uses the Structured Data Model (SDM) from GDAIS (via the DB Proxy tool) to serve as 

a centralized plan repository.  Second, it employs the TIM router from ISX for 

asynchronous message exchange among CODA modules.

Within this framework, individual planners ‘publish’ significant versions of their local 

plans to the SDM, which are then accessible to all CODA agents. CODA agents read 

plans from the SDM to initialize their ontologies of plan objects.  Checking of PARs is 

initiated under user control (i.e., CODA's real-time matching has been deactivated). 

6.2.3. Linkage to Operational SOFTools  

CODA Version 0.5 was linked to the research version of SOFTools (version 1.2d).  In 

particular, CODA relied on special hooks within that version of SOFTools to provide 

notification of plan changes that could impact PAR matching. 

In the final year of the Active Templates project, we migrated CODA from version 1.2d 

of SOFTools (the research version) to the operational version being developed by GDAIS 

(starting with version 2.0, currently with version 3.0). 

CODA was designed originally around an ‘event-oriented’ model, in which individual 

edits prosecuted by a user were tracked.  This tracking would then enable reasoning to 

detect changes that match user-specified PARs. This event-oriented approach enables 

real-time notification of relevant plan changes, but requires modifications to the plan 

development tool to track individual plan edits.  Because of the operational focus of the 

GDAIS team, we were unable to obtain the necessary hooks within SOFTools 3.0 to 

support such event monitoring.  For this reason, we migrated CODA to a ‘plan-oriented’ 

model, in which matching is done relative to incremental versions of published plans. As 

part of this work, we developed an XML parser that reads .SOF versions of a plan and 

stores them into CODA’s internal plan representation. 

Our update to run with the operational version of SOFTools introduced a key limitation 

into CODA.  The nonresearch versions of the SOFTools systems include a number of 

attributes for plan entities that are entered manually by a human planner as free text.  We 

had modified earlier versions of SOFTools to replace textual entries with selections from 

a predefined ontology.  This ontological grounding of attributes enables CODA to 

perform more sophisticated reasoning about plans than is possible with unconstrained 

text strings.  Within our current version of CODA, we have opted to treat text fields 

within the nonresearch SOFTools systems as ‘interpretable’, making the assumption that 
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user-supplied text corresponds to a predefined ontology element.  This assumption 

enables us to demonstrate the power of CODA within the limitations of the nonresearch 

SOFTools systems, until such time as it incorporates anontology for plan terms.  

However, it does render the system nonrobust with respect to inputs that are not defined 

without our internal ontology. 

6.2.4. Session Management 

CODA supports a model of asynchronous collaboration, in which users can drop in or out 

of a distributed planning session and still receive the benefits of CODA services.  In 

particular, the CODA module for a new user is initialized automatically to include the 

currently registered PARs of all other active users.  Other session-related capabilities 

include notification of when users log on or off, and automatic deregistration of PARs on 

logoff.

6.2.5. PAR Extensions 

We extended the underlying PAR representation in two ways to meet the requirements of 

real-world applications.  First, we added priorities to PARs.  Our priority model consists 

of the levels of importance.  One important use of priorities is to enable different types of 

notification services based on PAR significance.  Within the current CODA system, for 

example, notifications are displayed in red, green, or blue, depending on the priority level 

of the matched PAR.  These priorities could also be associated with different 

communication modalities (e.g., notifications of high-priority matches are sent by beeper, 

while others are sent by email). Second, we added a notion of context to PARs organized 

around individual operations plans, and missions.  This contextualization enables an 

operator, who may be engaged in planning for a number of operations simultaneously, to 

localize his information updates to the specific planning contexts where they are relevant. 

6.3. PAR Specification Tools 

The initial CODA prototype relied exclusively on a programmatic interface for 

specifying PARs.  While adequate for internal use, this interface would be inappropriate 

for operational personnel.  On this contract, we developed a range of complementary 

PAR specification tools to support various types of CODA users and their needs, namely

o a forms-based editor that covers the full range of the PAR language 

o an object-based interface for quick specification of a limited range of PARs 

o a library mechanism that supports user selection from predefined collections of 

PARs

During a particular planning session, we would expect a planner to draw on libraries of 

predefined PARs primarily to form the basis of his registered interests, augmenting them 

as necessary with authored PARs tied to the current situation and plans. 

We briefly describe each of these specification tools below. 
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6.3.1. Forms-based PAR Authoring 

The forms-filling editor for creating PARs provides a sophisticated specification tool 

aimed at advanced users.  This tool was developed using Adaptive Forms (Frank and 

Szekely 1998), a grammar-based framework from USC/ISI that supports the specification 

of structured data through a form-filling interface that adapts in response to user inputs. 

With this tool, users create PARs by filling in forms with an English-like syntax; as users 

incrementally specify PARs, remaining options change in accord with the constraints of 

the underlying grammar.  An internal compiler transforms these high-level specifications 

into the formal PAR structures required by CODA's matcher. 

Creation of an Adaptive Forms application involves specifying a grammar that defines 

the forms to be presented to the user.  For CODA, we developed a grammar (and hence 

an interface) to support the full range of expressiveness of our PAR representation 

language (with minor exceptions). 

In designing a specification tool of this type, the competing requirements of expressivity 

and ease of use must be balanced.  Sufficient expressivity is required to ensure coverage 

of relevant cases; however, support for full expressivity can lead to complex and 

unintuitive interfaces.   To address this issue, CODA's PAR authoring tool provides two 

sets of forms. First, a set of general forms provides the full expressive power of the PAR 

language, including the ability to construct arbitrary expressions in first-order logic.  

While powerful, these forms require more effort to complete; in addition, people 

unaccustomed to formal languages require training to use them effectively.

For this reason, the tool also includes specializations of the general forms that capture 

common idioms within the SOF planning domain. These specialized forms build in 

values that users would have to specify in the general case, thus simplifying and 

shortening the specification process. Parameters within the forms enable customization to 

a given planning session.  SOF planners, for example, are generally interested in delays 

to activities.  The SOF application of CODA includes (among others) the following 

parameterized PAR idiom: 

Delays to any actions of greater than

Delays to action

The first form supports declaration of interest in delays to actions that exceed a duration 

to be supplied by the user.  The second form supports declaration of interest in delays to a 

user-specified action within a plan. Users can create PARs based on these specialized 

forms simply by supplying the designated parameters. 

6.3.2. PAR Libraries 

The CODA library facility allows PARs to be defined ahead of time and grouped into 

modules according to functionality or expected usage. For example, our SOF 

demonstration system includes separate libraries for fire-support, maneuver, combat 

search and rescue (CSAR), and so on.  Predefinition makes sense for many applications, 
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as there will often be a general set of 

changes that individual planners would 

want to monitor.  For example, a team 

responsible for medical needs during an 

evacuation would almost always be 

interested in changes to the size of the force 

and the expected number of evacuees.  

PARs for these types of change can be 

stored in a library focused on the needs of 

medical planners. 

6.3.3. Object-based PAR Specification 

Tool

The object-based PAR specification tool 

enables a user to quickly define simple 

PARs.  It organizes the specification 

process around individual and classes of 

SOFTools objects.  The user begins by 

selecting a class of such objects, and then 

selecting either a generic object of that class 

or a specific individual defined in some 

current plan.  For that selection, the user 

specifies a mode of change in which he is 

interested, one of modification, deletion, 

delay, or creation (depending on the object 

type).  In addition, the user can specify a 

scope for the change (in terms of the plan, 

operation, or mission to consider), and a 

PAR priority. 

The object-based PAR specification tool, 

shown in Figure 14, provides an effective mechanism for quickly creating a broad range 

of simple but useful PARs. Its expressiveness, however, is limited.  For example, while it 

is easy to specify a PAR expressing interest in “any delay to the Secure Church 

objective”, a specific delay length cannot be designated. 

6.4. CODA System 

The CODA system runs on PC hardware under the Microsoft Windows family of 

operating systems (95, 98, 2000, NT, XP).  There is an extensive user guide for the 

system that includes (a) instructions for downloading and installation of CODA, (b) a 

detailed overview of the CODA interface, (c) a quick-start guide to walk users through a 

Figure 14. Object-based PAR 

Specification Tool 
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simple demonstration of CODA, and (d) an extended demonstration designed to capture 

intended use of CODA in a realistic SOF planning operation. 

The demonstrations are grounded in a scenario developed by subject matter experts 

within the DARPA program “Small Unit Operations: Situational Awareness System”. 

The mission involves neutralizing an enemy force that has taken position in a small town, 

and evacuating the town's civilian population. The basic maneuver plan includes the 

infiltration of reconnaissance and assault forces, the assault, and the reconstitution and 

exfiltration. 

6.5. Future Work 

We see several directions for extending our work on CODA.

6.5.1. Impact Analysis 

Focused information dissemination provides one important tool for coordination. One 

obvious next step for CODA would be to develop tools that could help a user understand 

the ramifications within his local plan of matches to PARs.

That type of impact analysis requires the availability of a deep causal model for the plan.  

For example, suppose that a planner makes the decision to change the assembly point for 

an evacuation operation from the local embassy to a nearby football stadium.  Such a 

change could impact strategy (i.e., it may now be possible to use larger helicopters for the 

evacuation), timing (i.e., the stadium may be further from the center of town), and 

security requirements.  Traditional AI planning techniques have assumed that a plan 

includes sufficient causal information so that all consequences could be computed 

directly when changes occur.  However, plans authored by human operators are unlikely 

to include that level of detail.  Our work on qualitative causal reasoning (Section 5) could 

be used to overcome this limitation. 

6.5.2. Generalized Notification Services 

CODA currently supports a simple mechanism for informing users of plan changes that 

match their declared PARs, namely, the display of a notification message in the CODA 

interface.  It would be valuable to consider a suite of multimodal notification methods, 

whose use could be customized to an individual planner.  The methods could include 

notification via email, phone, fax, or messaging to a personal digital assistant.  This 

broader range of notification schemes is imperative to support asynchronous models of 

planning, given that a user may not be ‘online’ with his planning system when critical 

changes are made of which he needs to be aware.  

The notification services would build on a user profile that provides both contact 

information and preferences for an individual user. Preferences could be based on criteria 

such as priorities associated with PARs, user location, and the priority or ownership of 

the modified plans. For example, a user might simply wish to receive an email message 

with a summary of changes to contingency plans that triggered matches to PARs, but 

prefer instant notification via a cell phone or PDA if some assets under his control are to 
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be reassigned. The phase of the planning cycle could also bear on the choice of contact 

medium: for example, as H-Hour approaches, users might prefer to be paged in order to 

maximize the time available to consider responses.   

6.5.3. Resolution Services 

The basic matching services within CODA enable awareness by a local planner of 

changes that could impact his planning process.  In situations where changes either 

introduce opportunities for synergy among planners (e.g., shared use of a tanker) or raise 

potential conflicts (e.g., the possibility of friendly fire incidents), human planners will 

need to collaborate to determine appropriate adjustments to their plans to reconcile the 

effects of the reported changes. 

One version of CODA incorporated a ‘chat’ facility to enable users to communicate 

informally to respond to plan changes.  The use of this medium for resolving problems is 

appropriate in certain circumstances (e.g., obvious modifications that are not expected to 

trigger controversy).   However, when changes are contentious or when there are users 

who have gone offline, alternative communication methods are required to facilitate the 

resolution process.

As a next step, it would be interesting to extended CODA to include a structured 

proposal/counterproposal capability that could be used by human planners to negotiate 

modifications to plans.  This facility would be grounded in an ontology of plan change 

proposals (e.g., delay an activity, use an alternative resource), with a user selecting one 

or more such proposals and instantiating them for the current situation.  Counterproposals 

could be made by modifying earlier proposals, or suggesting completely new alternatives 

in response to the original change event.
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7. Conclusions

Challenging planning problems are an integral part of many commercial, military and 

space endeavors.  Given the number and complexity of these problems, there is a clear 

need to develop technology to improve problem solving in these areas.  The SOF domain, 

the driving application domain for the Active Templates program, exemplifies a planning 

task for which technology could play several important roles: simplifying and expediting 

the planning process, enabling better solutions, and improving plan execution through 

support for execution monitoring and plan revision. 

To date, there has been limited success in transitioning AI technology into planning 

applications.  The root cause of the failure has been the misguided focus within the AI 

planning community on developing fully automated systems that could replace human 

decision makers.  In particular, the problems to be solved in these domains far exceed the 

technical capabilities of current planning technology.  Furthermore, the knowledge bases 

that would be required to capture even the basic factors that impact decision making for 

these domains would be difficult to create and problematic to maintain. Finally, few 

potential consumers of planning technology are interested in black-box solutions, as users 

would like to be able to shape and influence the decision-making process by which 

solutions are generated. 

We believe that AI planning technology can and will make a difference in real-world 

planning problems.  However, the successful technologies will not be fully automated.  

Rather, they will be user-centric technologies that provide assistance to the human 

planner rather than attempting to replace him.  Our work on this contract has focused on 

these types of user-centric planning technologies, covering both the needs of an 

individual planner and teams of distributed planners who must work collaboratively to 

develop a shared plan.

The core of our work focused on the PASSAT plan-authoring system. With its

combination of interactive plan authoring, plan sketching, and advice, PASSAT enables a 

user to quickly develop plans that draw upon past experience encoded in templates but 

that are customized to his individual preferences and the current situation.  The human 

remains the key decision maker within PASSAT, but can invoke automation when 

appropriate to aid with task expansion, constraint checking, and process management. 

This style of mixed-initiative planning is essential for many domains, where the 

generation of high-quality, trusted solutions requires substantial human insight and 

judgment. 

While there have been a number of mixed-initiative planning systems developed 

previously, those efforts have required that the system be endowed with complete and 

correct knowledge bases for the application domain.  Within PASSAT, we sought to 

relax this requirement.  Users can override system knowledge of constraints, when 

desired, during plan development. Similarly, our robust plan sketching capability can 

identify differences between a user’s outline for a plan and what the planning knowledge 

within the system supports as possible, as well as mechanisms to resolve those 
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differences. Our approach accommodates two categories of problem: violated 

applicability conditions and extraneous actions.

This tolerance of incorrectness within the background models used by the planning 

system constitutes a first step toward a much more flexible style of mixed-initiative 

planning that can support ‘out of the box’ ideas by the user. Our work on qualitative 

reasoning about plans moves even further in this direction, by supporting the ability to 

reason about plans using a less formal characterization of the plan’s structure than is 

required by current automated planning systems.  In particular, our qualitative framework 

supports a level of reasoning that is commensurate with the amount of casual structure 

and degree of precision that a human planner is willing to provide. An approach of this 

type will be essential for supporting human planners as they develop complex plans that 

necessarily transcend predefined knowledge bases.

With the CODA framework, we developed a practical solution to the problem of 

coordinating the activities of distributed human planners engaged with plan authoring 

tools.  By having human planners explicitly declare those aspects of the overall planning 

process that interest them, CODA enables timely and focused distribution of information 

that can expedite and improve the quality of coordinated problem solving. The use of a 

rich, AI-based representation for describing plans, planning changes, and background 

theories provides the key to this technology.  We believe that the coordination 

capabilities that CODA provides can improve significantly the effectiveness of a 

planning team.  As such, we were disappointed not to have the opportunity to transition 

the CODA system into operational use by the SOF community. We believe that this 

technology is ready for use in real-world planning problems, and will look to transition it 

in the context of future DARPA programs.   
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Abstract 

Sketching provides a natural and compact means for a user 
to outline a plan for a high-level objective. Previous work 
on plan sketching required that sketches be valid, meaning 
that there be at least one legal completion of the sketch 
relative to predefined planning knowledge.  This paper 
addresses the problem of plan sketch interpretation when 
the validity assumption does not hold.  We present a formal 
framework for robust plan sketching that defines key 
concepts and algorithms for interpreting and repairing plan 
sketches with respect to two classes of problem: violated 
applicability conditions and extraneous actions. We also 
describe a mixed-initiative implementation of this 
framework that supports a user and the system working 
collaboratively to refine a plan sketch to a satisfactory 
solution.  

Introduction   
Hierarchical planning systems support a top-down model 
of planning focused on the refinement of high-level 
objectives to executable actions.  Human planners, in 
contrast, often combine top-down planning with a bottom-
up approach that identifies specific tasks to be included in 
a final solution.  Indeed, studies have shown that designers 
tend to interleave decisions at various levels of abstraction, 
thus working opportunistically at times rather than in a 
purely top-down fashion [Guindon 1990].  For example 
the planners of a hostage rescue may decide where and 
how they will establish a safe haven and how hostages will 
be transported, without yet having selected an overall 
rescue strategy.  The selection of high-level strategy, in 
fact, can often be conditioned on such lower-level 
decisions.  
  This paper presents an HTN-based plan development 
framework grounded in the metaphor of sketching.  Our 
approach involves having a user sketch an outline of a plan 
for a particular objective, with the system providing 
assistance in refining the outline to a full solution.  A 
sketch consists of a collection of tasks that (1) may be only 
partially specified, and (2) may occur at various levels of 
abstraction in the plan hierarchy.1 Within this framework, a 
                                                 
 Copyright 2002, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved.  
1 Sketching often implies a graphical medium. While our model 
of sketching is compatible with graphical specification of tasks, 
we consider only logical specifications in this paper.  

human planner can combine opportunistic and top-down 
plan refinement in a manner that best suits his individual 
planning style.  The technical challenge for sketch 
processing is to develop mechanisms for extending an 
initial sketch to a complete solution for the user’s 
objective. 
 The concept of plan sketching has been considered 
previously [Myers 1997].  That work, however, required 
that plan sketches be valid, meaning that there be at least 
one legal completion of the sketch relative to predefined 
planning knowledge.  Mismatches between human 
conceptualizations of a domain and formalized planning 
knowledge, however, can lead to situations where user 
sketches are uninterpretable.  This paper addresses the 
problem of plan sketch interpretation when the validity 
assumption no longer holds.  In particular, we present a 
formal framework for plan sketching that defines concepts 
and algorithms for interpreting and repairing invalid plan 
sketches in a robust manner. 
 Our theory of sketch interpretation and repair could be 
operationalized as a fully automated system.  Instead, we 
have chosen to define a mixed-initiative approach in which 
the system guides a human planner through the process of 
modifying a plan sketch to eliminate detected problems. 
The role of the system in this framework is to identify 
sketch problems and possible repairs, while the human acts 
as the decision maker in navigating through the space of 
options.  
 We have implemented our robust plan sketching 
framework as part of a broader human-centric planning 
system called PASSAT (Plan-Authoring System based on 
Sketches, Advice, and Templates) [Myers et al. 2002]. 
Within PASSAT, users draw upon a library of templates, 
to the extent they desire, to assist with plan development.  
Templates are a form of task network [Tate, 1977; Erol et 
al. 1994], and may encode both parameterized standard 
operating procedures and cases corresponding to actual or 
notional plans developed for related tasks. PASSAT also 
provides a rich set of interactive and automated planning 
capabilities that complement the plan sketching capabilities 
described in this paper. 
 We begin the paper with a short overview of our 
planning model.  Next, we describe the core technical 
components of the work, namely, a model of tolerant plan 
sketch compliance, a set of repair mechanisms, and a 
robust sketch processing algorithm. We then describe a 
realization of the sketch processing algorithm within 

 From: Procedings of the 2003 International Conference on Automated Planning and Scheduling (ICAPS’03). 
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PASSAT’s mixed-initiative planning framework, and 
illustrate its use in a detailed example. That is followed by 
a description of tools that we have built to facilitate plan 
sketching (namely, an interactive sketch editor and a 
sketch space exploration aid). Finally, we close with a 
discussion of related work and conclusions.  

Planning Model 
We employ a hierarchical task network (HTN) model of 
planning, based loosely on that of [Erol et al. 1994]. 
 The cornerstones of HTN planning are task networks 
and templates (alternatively, operators or methods). 
Informally, a task network is a partially ordered set of 
tasks to be achieved, along with conditions on the world 
state before and after tasks are executed.  Templates 
specify methods for reducing an individual task to some 
set of subtasks, under appropriate conditions.  HTN 
planning consists of taking a description of an initial world 
state, an initial task network, and a set of templates for task 
refinement, and then searching for templates that can be 
applied to reduce the initial task network to a set of 
executable tasks.   
 Formally, we define a task network <N,L,W>, where N 
is a set of task nodes, L is a set of ordering constraints on 
those nodes, and W is a set of world constraints.  An HTN 
planning problem is defined by <O, T0, W0>, where O is a 
set of templates, T0 is an initial task network, and W0 is a 
set of propositions describing the initial world state. A 
template o is characterized by its purpose Purpose(o) (i.e., 
the tasks to which it can be applied), the preconditions for 
applying the template Preconds(o), and the task network 
Tasks(o) to which a task matching the purpose can be 
reduced by applying the template.  The tasks, constraints, 
and goals in the task networks and templates are defined 
using a first-order language with existential interpretation 
of variables. 
 Tasks can be either primitive or nonprimitive, with the 
former having no possible refinements. A solution to an 
HTN problem consists of a refinement of the original task 
network to a network of primitive tasks for which all 
constraints can be resolved. A solution is characterized by 
a plan refinement structure <P,N,D>, where P is the set of 
task networks produced, N is the set of nodes in any of the 
task networks, and D defines a directed acyclic graph of 
the refinement relations from a node to each of its 
descendants.  
 Each node in a plan refinement structure has attributes 
defined by its associated task.  Key attributes for sketch 
interpretation include the task for the node Task(n), the 
ancestor node Ances(n), the template that has been used to 
refine that node Template(n), and the bindings for the 
refinement Bindings(n).  We use the notation pσ to denote 
the application of bindings σ to object p (a template, term, 
proposition). The notation σ1 ∪ σ2 denotes the composition 
of bindings. With this notation, Task(n)Bindings(Ances(n)) 
denotes the instantiated task for node n. 
 

 

Tolerant Plan Sketch Compliance 
We begin by defining a plan sketch.  
 
Definition 1 (Plan Sketch) A plan sketch is a set of tasks. 
 
Note that the tasks within a plan sketch can be primitive or 
nonprimitive, ground or nonground. 
 The work in [Myers 1997] focused on the concept of 
plan sketch compliance, namely, finding a plan refinement 
structure that embeds an instantiation of the plan sketch.  
Definition 2 formalizes this requirement.   
 
Definition 2 (Plan Sketch Compliance) A plan 
refinement structure H=<P,N,D>  is compliant with a plan 
sketch S iff there is a substitution β such that for every 
sketch task A∈S, there is some node n∈N with σ 
=Bindings (Ances(n)) such that Task(n)σ = A β. 
 
 Robust plan sketching requires a less stringent condition 
on solutions than that of compliance from Definition 2.  
This weaker condition must account for both (a) user 
misconceptions about the task domain (i.e., situations 
where the user has incorrect models of when and how 
activities can be undertaken), and (b) background 
knowledge that may be incorrect or incomplete.  In this 
paper, we focus on two types of problem within sketches 
that derive from user misconceptions and faulty domain 
knowledge:  

• Type 1: violations of constraints from the templates 
used to interpret a plan sketch 

• Type 2: sketch tasks that do not map to any high-
level goal (i.e., orphaned tasks).  

 
 We define the weaker notion of maximal compliance to 
accommodate these problem types. In contrast to the 
concept of full compliance from Definition 2, maximal 
compliance captures the notion of embedding a maximal 
subset of the original sketch within a plan refinement 
structure while minimizing constraint violations.  
 The formal definition of maximal compliance builds on 
the concept of conditional compliance. Conditional 
compliance for a plan sketch allows a designated set of 
constraints to be ignored. For a set of templates O, define 
O/C to be the set of templates that is identical to O except 
that all template preconditions that unify with constraints 
in C have been removed.    
 
Definition 3 (Conditional Compliance) A plan 
refinement structure H for a problem <O, T0, W0> is 
conditionally compliant with a sketch S and set of 
conditions C iff H both is compliant for S and is a plan 
refinement structure for the problem <O/C, T0, W0>. 
 
Definition 4 (Maximal Compliance) Let H=<P,N,D> be 
a plan refinement structure and S0 be a plan sketch. H is 
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maximally compliant with S0 iff H is conditionally 
compliant with some sketch S⊂S0 and conditions C, and 
there is no plan refinement structure H′ such that for some 
conditions C′⊂C and sketch S′ where S⊂S′⊂S0 either: 

• H′  is conditionally compliant with S′ and C, or 
• H′  is conditionally compliant with S and C′. 

 
Maximal compliance characterizes the class of solutions to 
a planning problem that best reflect a given sketch, subject 
to the constraints of the background knowledge. Ideally, a 
robust sketch interpretation algorithm should aim to 
identify one or more plan refinement structures that are 
maximally compliant. However, domain complexity may 
preclude finding such optimal solutions in practice. 

Robust Sketch Interpretation 
In this section, we define an algorithm for robust sketch 
interpretation that is motivated by the notions of 
conditional and maximal compliance. The algorithm builds 
substantially on the ‘nonrobust’ algorithm of [Myers 
1997]. We first provide a high-level summary of that 
method, and then define a set of extensions and 
modifications that enable robust sketch interpretation.   

Summary of the Nonrobust Method 
The nonrobust method consists of two steps: (a) an initial 
abduction phase for linking sketch tasks to a high-level 
goal, and (b) a subsequent refinement phase in which the 
abduction results guide decision making to produce a full 
plan that is compliant with the sketch.  
 The abductive phase produces a collection of chains for 
each sketch task, where a chain encodes an abstraction 
path from a sketch task to a designated high-level objective 
through the templates defined for the planning domain.  
 
Definition 5 [Abductive Chains] The abductive chains 
for a task A and objective G are the set of labeled linear 
graphs 
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where each Oj is a template with purpose Tj-1 and a subtask 
Qj such that σj is a most-general unifier of Qj and Tj 

β for 
β=∪n≥i>j σi. 
 
We say a task A is orphaned for an objective G (or just 
orphaned when the objective is clear) iff there are no 
abductive chains linking A to G.  
 The abductive chains are used to guide HTN refinement 
in order to ensure that the resultant plan contains each of 
the anchors in the specified sketch. Standard task 
refinement involves selecting a template that applies to a 
given task (i.e., the template’s purpose unifies with the task 
and all template preconditions are satisfied).  For sketch 
processing, refinement must further restrict template 
choices and extend variable substitutions so that the 

resultant plan structure is consistent with at least one chain 
for each sketch task.  Consistency requires that there be a 
path in the hierarchical plan structure from the top-level 
objective to a leaf node for which the choice of template is 
identical to that of the chain, and all variable substitutions 
are consistent. An inability to identify a compatible set of 
abductive chains for a refinement step indicates that the 
current plan cannot be expanded to a complete plan that is 
compliant with the original sketch; hence, further 
exploration of that option is pointless. 

Tolerating Sketch Problems 
To accommodate the two classes of sketch problem 
described above, we generalize and extend the nonrobust 
algorithm in three ways.  First, violated preconditions for 
template application are ignored temporarily in both the 
abduction and refinement phases, provided they are 
deemed potentially fixable (discussed below). Second, 
orphaned sketch tasks are ignored during the refinement 
phase. Finally, a repair phase is added in which detected 
problems are resolved.   

Plan Sketch Repairs 
We define four types of repair:  drop constraint, drop task, 
modify task, and replace task.  
 

• DropConstraint(c) – ignore the constraint c. 
 
• DropTask(T) – delete task T from the current 

sketch.  
 

• ModifyTask(T,i,v)) – change the ith argument of 
sketch task T to be v 

 
• ReplaceTask(T1,T2)  –  replace sketch task T1 with 

task T2  
 
When considering repairs performed by a human (as 
opposed to automatically), these repair types can be 
categorized according to what they say about user versus 
system expertise.  The drop constraint repair would be 
invoked in situations where the user’s knowledge overrides 
that of the system.  In contrast, application of the other 
repairs indicates a preference for the system’s knowledge 
over that of the user (as reflected in his original sketch).   
 To provide focus, we employ two criteria to limit the 
applicability of repairs: (a) relevance of the repair, as 
captured by a requirement for deductive linkage between 
sketch tasks and violated constraints, and (b) prespecified 
domain knowledge that identifies classes of constraints and 
tasks to which the repairs apply.  
 
Deductive Linkage Deductive linkage requires a logical 
relationship between a sketch task A and a violated 
constraint c through an abductive chain.  Specifically, 
some argument to a sketch task A is connected to some 
argument in the violated constraint c via unification 
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constraints defined by the templates within the abductive 
chain.  This linkage introduces the potential (but not a 
guarantee) that a change that involves the relevant sketch 
task argument could eliminate the violation c. For 
example, a sketch task that designates the use of a certain 
class of helicopter for an airlift operation might lead to 
violation of a constraint higher up in an abductive chain 
related to lift capacity. Switching to a more powerful class 
of helicopter could fix the problem. 
 In the definitions below, we use the proposition 
 

Links(Task(a1, … ,an), i, P(b1, … ,bm), Chain) 
 

to indicate that within the abductive chain Chain, there is 
deductive linkage from argument ai in Task(a1, … ,an) to bj 
in some predicate P(b1, … ,bm), where P(b1, … ,bm) is a 
precondition for a template used in the chain abstraction. 
 
Domain Knowledge Prespecified domain knowledge is 
used to restrict the classes of task and constraint to which 
various types of repair apply.  We consider three 
categories. 
 
A. Droppable Constraints. Droppable constraints 

correspond to predicates with a ‘soft’ interpretation in 
that they denote preferences or guidelines rather than 
gating conditions. For example, a template for a 
helicopter airlift may require wind speed below a 
certain threshold; a planner may decide to drop that 
constraint in the event that the current wind speed only 
slightly exceeds the threshold and all other 
requirements are satisfied. 

 
B. Modifiable Task Arguments A task argument is 

categorized as modifiable to indicate that changes to 
that argument are allowed. For example, with the task 
FLY(start, destination, flight) in a travel planning 
domain, it would make sense to consider alternate 
flights but not start or destination locations. 

 
C. Replaceable Tasks A task is categorized as replaceable 

to indicate that alternatives for that task can be 
considered. 2  

 
We represent these declarations as follows, using KB to 
refer to the predefined knowledge base of the planning 
system and xi and yj  to denote variables.  The statement 

 
KB ╞ DroppablePredicate(P(x1, …,xm)) 

 
indicates that any predicate that unifies with P(x1, … xm) is 
considered droppable for sketch repair; similarly 

 
KB ╞ ChangeableTask(Task(x1, … ,xm),i) 

                                                 
2 More generally, the properties of droppability, modifiability, 
and replaceability should be characterized as preference 
orderings.  We will address this issue in future work.  

 
indicates that the ith argument of any task that unifies with 
Task(x1, … ,xm) can be modified for sketch repair, and  

 
KB ╞ ReplaceableTask(Task(x1, … ,xm), Task(y1, … ,yn)) 

 
indicates that any task that unifies with Task(x1, … ,xm) can 
be replaced by a task that unifies with Task(y1, … ,yn).  
 
We can now formally characterize the class of induced 
repairs for a given sketch and its abductive chains. The 
induced repairs constitute a minimal set of relevant repairs 
to consider when repairing a sketch. 
 
Definition 7 (Induced Repairs) The set of induced 
repairs for a sketch S with abductive chains Chains 
consists of 
 

(a) DropConstraint(P(b1, …,bm)) for any unsatisfied 
constraint P(b1, … bm) in Chains such that KB ╞ 
DroppablePredicate(P(x1, …,xm)) 

 
(b) DropTask(Task(a1, … ,an)) for any task Task(a1, … 

,an)∈S  that is either orphaned, or for which there is 
some unsatisfied constraint P(b1, … bm) and some 
C∈Chains such that Links(Task(a1, … ,an),k,P(b1, … 
,bm),C), for some 1≤k≤n 

 
(c) ModifyTask(T(a1, … ,an),i,v) for any task T(a1, … 

,an) ∈S  that is orphaned, or for which KB ╞ 
ChangeableTask(Task(x1, … ,xn),i) and there is some 
C∈Chains  and unsatisfied constraint P(b1, … bm) 
such that Links(Task(a1, … ,an),i,P(b1, … ,bm),C) 

 
(d) ReplaceTask(Task(a1, … ,an), Task′ (b1, … ,bm))  for 

any task T(a1, … ,an) ∈S  that is orphaned, or for 
which KB ╞ ReplaceableTask (Task(x1, ... ,xn1), 
Task′ (y1, … ,yn2)) and there is some unsatisfied 
constraint P(b1, …,bm), and C∈Chains such that 
Links(Task(a1, … ,an),k,P(b1, …,bm),Chain) for some 
1≤k≤n 

 
 For cases (b) through (d) in Definition 7, we say that the 
repair covers the orphaned sketch task Task(a1, … ,an); for 
cases (a) through (d), we say that the repair covers the 
violated constraint P(b1, …,bm). The set of potentially 
fixable constraint violations is defined to be the constraint 
violations covered by the induced repairs. 
 The induced repairs provide a means to focus the repair 
process. Because the space of possible sketch changes can 
be enormous (as discussed further below), this filtering is 
essential for restricting the number of options considered.  
 Within a mixed-initiative framework, one can envision 
user modifications to a plan sketch that go beyond the 
induced repairs.  Such changes could reflect additional 
user knowledge about the domain, or a change in strategy 
from that embodied in the original sketch.  



53 

Sketch Repair Algorithm 
Figure 1 presents our algorithm for robust sketch 
processing.3  Processing a sketch S for a problem <O, T0, 
W0> would involve a call to ProcessSketch(S,{},<O, T0, 
W0>); the results returned (via Step 3a) would be a 
modified sketch S*, a set of conditions C*, and a plan 
refinement structure H* that is conditionally compliant 
with S* and C* for <O, T0, W0>  (see Definition 3).  
 Steps 1 and 2 correspond to the abduction and 
refinement phases of the nonrobust algorithms from 
[Myers, 1997], although modified to ignore potentially 
fixable constraint violations and orphaned sketch tasks.  
Step 3 nondeterministically selects and applies induced 
repairs to cover all detected problems, yielding a modified 
sketch S′ and collection of dropped constraints C′.  Step 4 
recursively invokes the sketch processing algorithm for S′ 
and C′ to produce a plan refinement structure that is 
conditionally compliant with the revised sketch (if one 
exists) or to identify additional problems to repair. 
 The algorithm as stated does not guarantee maximal 
plan sketch compliance (see Definition 4), although it 
could easily be restructured as an optimization process to 
identify maximal solutions. As discussed further below, we 
believe that optimization is an inappropriate goal because 
of the potentially explosive size of the repair search space. 
                                                 
3 To simplify the presentation, the algorithm ignores the potential 
for repairs that preempt each other  (e.g., one repair changes an 
argument of a sketch task while a second replaces the sketch task 
with a different task). 

Furthermore, our experience indicates that while users 
prefer solutions that are close to a proposed sketch, 
maximal compliance is generally not necessary.  

Mixed-initiative Repair 
The algorithm for sketch repair in Figure 1 does not 
commit to a specific implementation design.  One option is 
to automate fully the algorithm, including the process of 
selecting and applying repairs. In the general case, the 
space of candidate sketch revisions to consider during each 
call to ProcessSketch will be of size O(kv) where k is the 
number of induced repairs for a violation and v is the 
number of violations.  While v could be expected to be a 
relatively small number (say, in the range 5-10), k could be 
quite large. In particular, modify task repairs could 
encompass changes to any of a task’s arguments, and may 
need to consider a broad range of possible values for each.  
A fully automated approach to sketch repair would require 
powerful heuristics to be effective for such a large space. 
  Our interests lie with more user-centric planning aids, 
which led us to develop a mixed-initiative realization of 
the sketch progressing algorithm. In our framework, the 
system identifies violations and possible repairs while the 
user selects repairs and directs the overall search.  The 
framework is designed for iterative use, with a human 
planner incrementally refining a sketch in response to 
detected problems until finding a satisfactory solution. 

Figure 1.  Algorithm for Robust Sketch Processing 

ProcessSketch(S, C, <O, T0, W0>) 
• Step 1 [Abduction]: Generate abductive chains Chains(T) for each task T∈S while ignoring potentially fixable 

constraint violations  
o Set:  Orphans   ← {T∈S  |  Chains(T)={}}  

• Step 2 [Refinement]: Generate a task refinement structure H that is   
 consistent with at least one abductive chain for each T ∈ S – Orphans, and 
 ignores potentially fixable constraint violations  

If no such task refinement structure exists, then return failure. 
o Set:  V← the potentially fixable constraint violations for H 

• Step 3 [Repair]:   
• Step 3a: If V=Orphans={}, then return solution <H,S,C>. 
• Step 3b: Else repair the sketch:  

 S′   ← S 
 C′  ← C 
 Nondeterministically select a set of induced repairs {r1, … rm} to cover v ∈V and T∈Orphans

If no such set exists, then return failure. 
 Perform the repairs as follows: 

• If ri = DropConstraint(v): C′  ← C′ ∪ {v} 
• If ri = DropTask(T): S′  ← S′ – {T} 
• If ri = ReplaceTask(T1,T2): S′  ← {S′ – {T1}} ∪ {T2} 
• If ri = ModifyTask(T(a1, …,an),i,d)):      

                       S′  ← S′ – {T(a1, …,an)} ∪  {T(a1, …,ai-1,d, ai+1, …,an)} 
• Step 4 [Validation]: Invoke ProcessSketch(S′, C′ ,<O/C′, T0, W0>)  
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 One important characteristic of the algorithm from 
Figure 1 for a mixed-initiative approach is the articulation 
of a separate repair phase subsequent to the abduction and 
refinement phases.  Delaying repairs until after abduction 
and refinement complete (as opposed to performing repairs 
while chains or refinement structures are constructed) 
means that a plan structure is available to ground the repair 
process. This context is important for two reasons.  First, 
the user is not making a decision in a vacuum; rather, it is 
possible to understand the potential impact of a repair on 
the current plan.  Second, interactions with the user are 
limited to a single candidate solution, thus providing focus.  
Work in the collaborative problem-solving community 
views focus as an essential requirement for coherent user-
system interactions [Rich and Sidner, 1998].  The work of 
[Allen  and Ferguson, 2002] similarly builds on a 
candidate solution (the ‘straw plan’) to guide mixed-
initiative planning. 
 Our implementation differs slightly from the algorithm 
of Figure 1 in that it does not generate a single complete 
plan refinement structure in Step 2.  Instead, it computes a 
set of expansions, each of which amounts to a least-
commitment partial HTN structure that embeds the sketch 
and all derived consequences.  In particular, expansions do 
not make commitments that are not required to connect 
sketch tasks to the high-level goal.  For example, a sketch 
for a hostage rescue objective that contained only tasks 
related to reconnaissance would yield expansions limited 
to the reconnaissance subportion of the plan.  This switch 
to expansions was motivated primarily by our desire to 
support a more user-centric planning process, where 
strategic decision making is left to the user. It would be 
straightforward to extend the approach to support 
generation of complete plans for sketches using standard 
HTN techniques. 

Sketch Example  
To illustrate the sketch-processing capabilities within 
PASSAT, we consider an example from a special 

operations domain that has motivated much of our work.  
The example focuses on a hostage rescue scenario in 
which a group of hostages is being held captive by 
guerrillas in Mogadishu's town hall.  Riyadh Airport has 
been selected as the jumping-off location for the mission 
while the hostages are to be evacuated to Riyadh Stadium. 
The high-level task for this plan is represented as 
 
 RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL,  
         RIYADH-AIRPORT,  
         RIYADH-STADIUM) 
  
 Figure 2 shows a sketch that consists of four tasks: (1) a 
reconnaissance force (Yellow-Team-1) swimming from a 
submarine (denoted by the variable ?SUBMARINE) at 
Mogadishu Port to the port entrance, (2) inserting a combat 
team (Green-ODA-1) at the town hall via a UH-60A 
helicopter, (3) having the combat team storm the town hall, 
and (4) positioning a security team at the evacuation site.  
The labels above each task argument identify that 
argument’s role in the task. 
 Processing of this sketch by PASSAT yields three 
expansions, with a range of three to four violated 
constraints in each. The expansions interpret the role of the 
sketch tasks somewhat differently; for example, one 
expansion interprets the DROP task as part of the hostage 
extraction effort while the others interpret it as part of a 
reconnaissance operation.  
  The user can select one of these expansions and explore 
options for repairing its associated problems. Figure 3 
summarizes the constraint violations (top) and the 
hierarchical task/template structure (bottom) for one 
expansion; sketch tasks are highlighted. This expansion 
does not contain any orphaned tasks. 

Figure 4 displays the window that is presented to the 
user to repair the original sketch.  The window summarizes 
the repair options for each violation, which may consist of 
dropping the constraint, changing a parameter for a 
designated task, or making no repair. (Our interface does 
not yet support replace task repairs.) Because the use of 

Figure 2. Sample Plan Sketch for the Hostage Rescue Task 
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constraint dropping and task parameter changes is 
restricted by predefined domain knowledge, only some of 
these repairs may apply in each case.   

To support the user in changing a task parameter, the 
interface provides a drop-down list of candidate values.  
This set consists of instances for the type associated with 
that argument, with values that lead to violation of the 
given constraint (in accord with the deductive linkage from 
the sketch task to the constraint) explicitly marked as such.  
 As one approach to repairing the chosen expansion, the 
user could perform the following repairs: 

• drop the constraint VC1 
• modify the Helicopter argument of the DROP task 

to be UH-60L-1 rather than UH-60A-1, given 
that UH-60Ls have greater range (to address the 
violated constraint VC2)    

• drop the constraint VC3 
• modify the Force-Composition argument of the 

POSITION task to be SECURITY-PLATOON-1  
(to address the violated constraint  VC4 )  

 
 Given a set of repairs, PASSAT attempts to validate the 
revised sketch by reinterpreting it while ignoring the 
dropped constraints.  In this case, the repairs resolve the 
original problems but introduce a violation of the 
constraint (COMBAT-EFFECTIVE SECURITY-PLATOON-
1).  This new problem can be repaired by changing the 
Force-Composition argument to be SECURITY-

PLATOON-2 (i.e., a platoon that has been certified ready 
for combat). Processing of this revised sketch yields a 
single expansion with no constraint violations.   
 Figure 5 displays a snapshot of PASSAT’s interface 
after sketch processing has completed. The large frame on 
the left contains a hierarchical decomposition of the 
current plan refinement structure, showing the insertion of 
the final expansion for the Hostage-Rescue task.  Items 
next to folder icons are tasks that have been expanded; 
items next to star icons are nonprimitive tasks that can be 
expanded further; items next to document icons are 
primitive tasks. Sketch tasks appear italicized and 
highlighted in bold font.  The frame on the upper right 
shows the current agenda – the list of planning steps the 
user must perform to address outstanding issues.  PASSAT 
maintains this agenda automatically to assist a user in 
managing the planning process.   Constraints that the user 
chose to drop as part of the repair process appear 
highlighted on the agenda. Planning tasks that remain to be 
expanded are also added to the agenda. The frame on the 
lower right shows the list of information requirements – 
sources of information that have been identified by the 
user or PASSAT's planning knowledge as relevant to the 
planning process. 

 At this stage, the user could continue developing the 
current plan, by using any of PASSAT's capabilities for 
interactive planning, or by providing a plan sketch for a 
nonprimitive task. 

Violated Constraints 
VC1.  (SITUATION-TYPE RIYADH-STADIUM HOSTILE) 
VC2. (DISTANCE-< RIYADH-AIRPORT MOGADISHU-TOWN-HALL (RANGE UH-60A-1) 
VC3. (> (SEA-TEMPERATURE MOGADISHU-PORT-ENTRANCE) 40) 
VC4. (PLATOON-SIZED SECURITY-SQUAD-1) 

 
Expansion Task Structure 
Task: RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL, RIYADH-AIRPORT, RIYADH-STADIUM)  
Template: Hostage-Recovery-To-A-Potentially-Unstable-Area  
  Task: ADVANCED-RECON(COUNTRY-OF(MOGADISHU-TOWN-HALL))  
  Template: Advanced-Recon-Of-Target-Area  
    Task: RECON-SEAPORTS(SOMALIA)  
    Template: Recon-Seaports-In-Area  
      Task: RECON(MOGADISHU-PORT)  
      Template: Recon-With-Covert-Ground-Force  
        Task: EXFILTRATE(YELLOW-TEAM-1, MOGADISHU-PORT, ?TO-LOC)  
        Template: Swim-Exfiltrate-To-Submarine  
         Task: SWIM(?SUBMARINE, YELLOW-TEAM-1, MOGADISHU-PORT, MOGADISHU-PORT-ENTRANCE)  
  Task: RESCUE-AND-RECOVER(?FORWARD-POINT, MOGADISHU-TOWN-HALL, ?RECOVERY-LOCATION)  
  Template: Rescue-And-Recover-Hostages  
    Task: STORM(GREEN-ODA-1, MOGADISHU-TOWN-HALL)  
    Task: INFILTRATE(GREEN-ODA-1, RIYADH-AIRPORT, MOGADISHU-TOWN-HALL)  
    Template: Helicopter-Insertion-Rope  
      Task: DROP(GREEN-ODA-1, UH-60A-1, MOGADISHU-TOWN-HALL)  
  Task: PROVIDE-SECURITY(RIYADH-STADIUM)  
  Template: Site-Defense-Large-Reaction-Force  
    Task: POSITION(SECURITY-SQUAD-1, RIYADH-STADIUM)  

 

Figure 3. Violated Constraints and Plan Structure for the Selected Expansion 
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Sketching Tools 
Mixed-initiative systems require powerful and flexible 
interfaces to facilitate interactions with a user. To support 
mixed-initiative sketch repair, we developed two 
interactive tools: a sketch editor and a sketch space 
exploration aid.  

Sketch Editor 
Sketch specification involves defining the tasks that 
comprise a sketch and their arguments. PASSAT provides 
an interactive editor to simplify this process.  With this 
editor, the user first selects a set of tasks to be included in 
the sketch, and then specifies the arguments for those 
tasks. Allowed arguments consist of variables and all 
instances of the corresponding type for that argument. 
Figure 3 displays a final sketch created within the editor. 
  To help the user focus on relevant choices, the sketch 
editor incorporates context-sensitive presentation of 
options to the user for both task and argument selection. 
 

• Task selection: The editor exploits linkage among 
templates to limit task selection for a sketch to tasks 
that could possibly appear in any expansion of the 
‘objective’ currently under consideration. This 
filtering helps to eliminate many irrelevant options, 
thus both reducing clutter from the task selection 
menu and preventing the user from pursuing many 
fruitless avenues.  

 
• Argument selection:  It is often the case that many 

Figure 4. Candidate Repair Options 

Figure 5.   Plan with Sketch Expansion 
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candidate values for a task argument fail to satisfy 
the preconditions of any templates that could be 
applied to the task.  Eliminating such values from 
consideration prevents exploration of many dead-
ends.  However, one design requirement for 
PASSAT was the flexibility to let a user think ‘out 
of the box’.  In particular, PASSAT’s constraint 
reasoning allows certain constraints to be 
overridden at the user’s discretion.  For this reason, 
the possible values presented to the user are flagged 
to indicate whether or not they satisfy all associated 
constraints.  

 
This type of structured plan editor eliminates the 
possibility of syntactic mistakes (e.g., undefined tasks or 
arguments, use of inappropriate argument types) that can 
be a source of great frustration to a user.   In doing so, it 
allows the user to focus on the conceptual design for a 
sketch. 

Sketch Space Exploration Tool 
 The space of possible expansions for a given sketch can 
be dauntingly large, especially when interpretation is 
tolerant of invalid sketches.  To support a user in 
navigating this large space, we have developed a sketch 
space exploration tool that aids a user in managing the 
sketch refinement process (see Figure 6). The tool is 
organized around a tree structure that reflects the space of 
sketches and expansions that a user has explored.  The root 
of the tree corresponds to the initial sketch; it contains a 
descendant node for each expansion of the sketch. Each 
revision of an expansion in turn generates a descendant 
sketch node, from which a recursive structure emerges.  

 For a sketch node, the user can choose to generate 
expansions all at once or incrementally.  For an expansion, 
a user can view the template structure and the detected 
problems.  Expansions with minimal problems and 
minimal numbers of expected repairs to address those 
problems are highlighted. (One repair could fix multiple 
problems, thus these values can differ for a given 
expansion.) Eventually, the exploration tool will contain 
mechanisms to summarize and compare expansions and 
sketches.   

Related Work 
 The NuSketch system [Forbus eta al. 2001] provides a 
framework for creating graphical sketches of plans 
(specifically, for military courses of action) via a drawing 
metaphor. As with our work, these sketches are intended to 
provide outlines rather than complete plans, but in a 
pictorial rather than logical language.  NuSketch is focused 
on interpretation of visual inputs and the adequacy of 
mechanisms for specifying sketches visually, in contrast to 
our emphasis on interpreting sketches relative to a 
knowledge base of plan templates and helping a user refine 
a sketch to a satisfactory solution.  
 Qu and Beale’s work on cooperative response 
generation provides a mixed-initiative framework for 
constraint-based variable assignment problems [Qu and 
Beale 1999].  Users can perform ‘repairs’ by changing 
selections or dropping constraints.  The system detects 
violations and can assist the user by proposing new values 
and summarizing possible solutions.  While similar to our 
mixed-initiative sketch repair, this work does not 
incorporate any notion of plans. The authors note that, 
while there has been much work on cooperative response 
generation, most of it does not consider interactions among 
choices.    
 Our work on sketch interpretation shares with plan 
recognition techniques the objective of finding a plan that 
‘covers’ a set of specified tasks (see [Carberry, 2001] for a 
comprehensive overview of the field of plan recognition).   
These two lines of work differ, however, in several 
respects. One difference is that the plan recognition work 
is grounded in the assumption that there is a single 
intended plan to be determined; in contrast, our work 
supports the more general notion of identifying a range of 
possible interpretations for a given sketch. A second 
fundamental difference relates to the starting point: plan 
recognition techniques assume a complete, ordered set of 
tasks for a plan, while our model of a plan sketch consists 
of a partial and unordered set of tasks.  In particular, plan 
recognition work does not consider the problem of 
extending a partial plan to a complete solution.  Finally, 
most plan recognition work has been done in the context of 
STRIPS models of planning, in contrast to our focus on 
HTN models (although see [Gertner and Webber, 1996] 
for another HTN-based approach). 
 Most plan recognition work has assumed that observed 
actions (the analog of our sketch tasks) are part of a valid 

Figure 6. Sketch Space Exploration Tool 
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plan for an undetermined goal. However, there have been 
some notable attempts to address the problem of 
recognition of faulty plans.  Classifications of different 
types of plan-based misconceptions are presented in 
[Pollack 1986, Quilici et al. 1988, van Beek et al. 1993], 
with a comprehensive and detailed list provided in 
[Calistri-Yeh 1991].  The emphasis in that work is on 
identifying user misconceptions, with no consideration 
given to potential problems in the underlying domain 
knowledge.   Misconceptions can be broadly characterized 
in terms of missing actions, violated/unsupported 
preconditions, and unsupported actions.  Within the 
context of plan sketching, only violated preconditions and 
unsupported actions make sense (since the plan is only 
partially specified). Many of these papers also present 
methods to detect misconceptions and (at times) suggest 
potential fixes. [Calistri-Yeh 1991]  incorporates a 
probabilistic model of a user to identify ‘more likely’ 
explanations for observed actions.  Such a model could be 
useful within the context of our work to focus the user on 
expansions and repairs with greater expected relevance. 
 In the long term, we are interested in tools that support 
user updates to background planning knowledge when 
gaps or errors are detected. [Cohen and Spencer 1994] 
present an ATMS-based method for incremental updates to 
plan recognition structures when knowledge is added.  

Conclusions 
Plan sketching provides a powerful paradigm for user 
specification of complex plans.  Plan sketching can help a 
user quickly outline the key aspects of the plan, 
capitalizing on the system to fill in less important details 
around the sketch. In addition, it can serve as the basis for 
an exploratory process that allows a user to consider a 
variety of options when developing a plan. 
 Robustness is critical to ensuring that a plan sketching 
tool is usable and helpful.  Robustness requires the ability  
to identify differences between a user’s outline for a plan 
and what the planning knowledge within the system 
supports as possible, as well as mechanisms to address 
those problems.    
 The work presented here has defined an approach to 
robust plan sketch interpretation that accommodates two 
categories of problem: violated applicability conditions 
and extraneous actions.  This approach has been embodied 
within a mixed-initiative plan sketching framework in 
which a system identifies options for repair while a user 
selects candidate interpretations and repairs. 
 Areas for further work include broadening a sketch to 
include user constraints and temporal information, and 
developing tools to improve user understanding of the 
sketch space (specifically, summarization and comparison 
tools for sketches and expansions).  
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Abstract 

We describe a plan-authoring system called PASSAT 
(Plan-Authoring System based on Sketches, Advice, and 
Templates) that combines interactive tools for constructing 
plans with a suite of automated and mixed-initiative 
capabilities designed to complement human planning skills.  
PASSAT is organized around a library of predefined 
templates that encode task networks describing standard 
operating procedures and previous cases.  Users can select 
from these templates to apply during plan development, 
with the system providing various forms of automated 
assistance.  A mixed-initiative plan sketch facility helps 
users refine outlines for plans to complete solutions, by 
detecting problems and proposing possible fixes.  An advice 
capability enables user specification of high-level 
guidelines for plans that the system helps to enforce. 
Finally, PASSAT includes process facilitation mechanisms 
designed to help a user track and manage outstanding 
planning tasks and information requirements, as a means of 
improving the efficiency and effectiveness of the planning 
process. PASSAT is designed for applications for which a 
core of planning knowledge can be captured in predefined 
action models but where significant user control of the 
planning process is required.   

Introduction  
AI planning technology provides powerful tools for 
solving problems that require the coordination of actions in 
the pursuit of specified goals.  To date, however, there has 
been limited success in transitioning this technology to 
significant applications in the commercial, military, or 
space sectors.  A major obstacle to technology transfer lies 
with the lack of control available to potential users of 
planning systems.  AI planning systems have traditionally 
been designed to operate as black boxes: they take a 
description of a domain and a set of goals and 
automatically synthesize a plan for achieving the goals.  
Human planners, however, are generally reluctant to cede 
full control to automated planning systems in this manner. 
 Many potential consumers of planning technology 
require more user-centric tools that are designed to 
augment human skills rather than replace them.  This 
observation has led, in recent years, to the development of 

a number of plan-authoring frameworks. Plan-authoring 
systems provide a set of plan editing and manipulation 
capabilities that support users in developing plans.  These 
systems introduce a degree of structure to the planning 
process, yielding principled representations of plans with 
well-defined semantics.  Plan-authoring systems can 
include a range of planning aids that reason over this 
structure; however, the role of such automated aids is to 
augment human planning skills by facilitating human-
driven plan development.  Interest in plan-authoring 
systems is strong within both the space and military 
sectors, for their potential to improve the quality and 
process of plan development without incurring the high 
knowledge modeling costs and loss of control associated 
with fully automated planning systems. 
 This paper describes a plan-authoring system called 
PASSAT (Plan-Authoring System based on Sketches, 
Advice, and Templates) designed to support user-centric 
planning.  At its heart, PASSAT is a plan-authoring system 
in which users construct and modify plans interactively.  
Users can draw upon a library of templates, to the extent 
they desire, to assist with plan development.  Templates 
correspond to a form of hierarchical task network (HTN) 
[Tate, 1977], and may encode both parameterized standard 
operating procedures and cases corresponding to actual or 
notional plans developed for related tasks. 
 To complement these interactive tools, PASSAT 
includes a range of automated and mixed-initiative 
planning capabilities.  Users can invoke an automated 
planning mode based on standard HTN methods to expand 
any open task within a plan.  A plan sketch facility enables 
users to create outlines of plans that are then filled out 
using templates designed for similar tasks.     Advice within 
PASSAT enables users to define high-level policies to be 
satisfied by both plans and planning processes. Such 
guidance can be useful both in directing automated 
components within the system, and in tracking high-level 
guidelines that a user wants satisfied but may inadvertently 
violate through his interactive planning choices. 
 PASSAT also includes process facilitation mechanisms 
designed to aid the user in managing plan development.  
These mechanisms help the user track open tasks and 

 From: Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, 2002.
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outstanding information requirements for the current plan.  
Such assistance is critical in complex applications, as it 
helps the user stay focused without overlooking important 
details. 
 With its combination of interactive and automated 
capabilities, PASSAT enables a user to quickly develop 
plans that draw upon past experience encoded in templates 
but are customized to his individual preferences and the 
demands of the current situation.  PASSAT has been under 
development for about a year. This paper describes both 
the current PASSAT system and the more comprehensive 
plan-authoring system toward which we are working (with 
all future work noted explicitly as such).  We begin with a 
more detailed discussion of PASSAT and an example of its 
use, followed by a description of the representational 
constructs within PASSAT, the user-centric planning 
capabilities, and the process facilitation mechanisms.  The 
final section discusses related work. 

PASSAT Overview 
Plan development within PASSAT has been guided by two 
key principles: 
 

• Flexible, ‘out of the box’ planning:  Traditional 
AI planning systems lock users into a set of 
solutions, namely, those implied by the 
predefined action models that underlie plan 
development.  Within PASSAT, templates are 
viewed as guidelines for performing tasks; the 
human planner is free to expand the set of 
solutions defined by the templates. In particular, a 
user can override constraints, drop tasks, or insert 
additional tasks in accord with his personal 
preferences or the demands of the current 
situation.  Such flexibility is critical for domains 
in which correct and comprehensive collections of 
templates cannot be provided. 

• Controllable user-centric automation: Automated 
capabilities within PASSAT are designed both to 
complement human planning skills and to be 
readily directable by a human.  Automation would 
be invoked under user control only in contexts 
where he feels that it would be beneficial.  

Domain Characteristics 
PASSAT is generic, domain-independent technology but is 
tailored toward applications with the following 
characteristics. 
 
(a) The complexity of the domain precludes full capture 

of all relevant planning knowledge.  However, partial 
planning models can be developed. 

 
(b) Human input is critical, but some amount of 

automation would both improve plan quality and 
reduce overall planning time.  

 
 Our motivating application domain, Special Operations 
Forces (SOF) mission planning, has these characteristics.  
Standard operating procedures exist for many high- and 
mid-level activities in the SOF domain, and are readily 
amenable to encoding within an HTN representation.  For 
example, a hostage rescue operation can be characterized 
as consisting of the high-level objectives of performing 
reconnaissance in the areas around the rescue site, 
establishing a safe haven to which to remove the hostages, 
undertaking the assault to rescue the hostages, and 
transporting the hostages to the safe haven.  Low-level 
operations follow standard doctrine and can also be 
modeled in a relatively straightforward manner.1 
Intermediate strategy decisions pose a bigger challenge. 
For example, informed selection of areas and methods for 
reconnaissance requires deep background knowledge of 
reconnaissance operations, breadth of understanding of 
the current situation, and significant experience. Capturing 
and modeling this type of strategic knowledge in full 
presents a tremendous challenge. 

SOF planning lies well beyond the range of current 
automated planning technologies; moreover, fully 
automated solutions are unlikely ever to succeed because 
of the difficulty in formulating strategic knowledge with 
sufficient fidelity.  In contrast, a PASSAT-style plan-
authoring system provides a good technological match for 
the SOF planning domain. Missions arise unexpectedly, 
resulting in a need to assemble high-quality plans rapidly.  
Thus, the availability of tools to expedite plan 
development is important.  Because many types of SOF 
operations can be broadly characterized with predefined 
templates, knowledge bases can be developed that capture 
certain portions of the planning process.  However, 
individual operations tend to be highly distinctive, making 
it important to have tools that enable users to modify and 
customize plans to suit the needs of a particular situation. 
 Many potential application domains for planning 
technology share these characteristics of having partially 
formalizable domain knowledge and requiring significant 
user input to produce high-quality, situation-specific plans.  
On the military side, examples include air operations, 
disaster relief planning, and noncombatant evacuation 
operations.  Space applications include science mission 
planning and ground operations planning. 

PASSAT Example    
Figure 1 shows a snapshot of the PASSAT interface during 
a planning session. The large frame on the left contains a  
hierarchical decomposition of the current partial plan.  
Items next to folder icons are tasks that have been 
expanded; items next to star icons are tasks that can be 
expanded further (either through automated template 
application or interactively); and items next to document 
icons are tasks that match no templates. The frame on the 
                                                 
1 Many of our templates were derived directly from SOF 
field manuals. 
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upper right shows the current agenda – the list of planning 
steps the user must perform to address outstanding issues.  
The frame on the lower right shows the list of information 
requirements – sources of information that have been 
identified by the user or PASSAT's planning knowledge as 
relevant to various portions of the planning process. 
 The human planner develops the plan by selecting a 
planning step from the agenda and performing that step 
(many of these planning steps are accessible through the 
plan display as well).  If the planning step is to expand the 
PROVIDE-CSAR-COVERAGE task, for example, the 
planner would be presented with several options: apply 
one of the templates that matches the task (see Figure 2), 
enter an expansion manually, or create a sketch for 
achieving the PROVIDE-CSAR-COVERAGE task and 
work with PASSAT to refine that sketch.  Performing this 
planning step may cause additional planning steps to be 
added to the agenda (i.e., new tasks, variables, and 
constraints may have been introduced into the plan) and 
new information requirements as well.  

Plan Representation 
PASSAT's representation of plans and tasks is based on a 
fairly standard HTN model (similar to that of [Erol et al., 
1994]), augmented with a rich temporal representation for 
tasks.  Using PASSAT, a user would describe the objective 
of the plan in the form of one or more task statements,  
each consisting of a task operator and terms (variables, 
instances, or functions applied to terms). 
 
Templates A template describes one way that a task  (i.e., 
the template’s purpose) can be decomposed into subtasks.  
A template consists of a set of these subtasks, as well the 
variables used in the template, constraints on the 
applicability of the template, and the effects of successfully 
performing individual tasks and the entire template. 
Different templates may describe different decompositions 
for the same task. 
  

Figure 1. PASSAT Interface during Plan Development 
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 PASSAT’s template representation supports two 
features not found in the framework of [Erol et al. 1994], 
namely information requirements (discussed in detail 
below) and enumeration tasks.  Enumeration tasks enable 
the specification of a set of tasks relative to a set of terms 
that satisfy a designed predicate.  For example, the 
enumeration task 
 
∀?city.DISTANCE(?city,?hostage-locn)<20  
       ⇒ RECON(?city) 
 

indicates that a RECON task should be performed  for each 
city within the specified distance.  Other HTN frameworks 
(e.g., O-Plan [Currie and Tate, 1991] and SIPE-2 [Wilkins 
1993]) provide similar mechanisms for enumerating 
subtasks relative to a designated constraint. 
 

Constraints Constraints consist of state predicates that 
denote hard or soft conditions, perhaps due to physical 
laws or policy rules.  PASSAT employs a three-valued 
logic for constraints, grounded in the values TRUE, 
FALSE, and UNKNOWN.    
 Automated constraint checking is performed when 
constraints are created or modified in the plan.  Checking 
of ground constraints may return a status of UNKNOWN, if 
the information is not specified in the world state; such 
constraints would need to be validated explicitly by the 
user.  Checking of nonground constraints occurs only 
when the number of possible instantiations is less than a 
predefined threshold, with the system testing whether the 
constraint is valid or invalid for each (i.e., establishing that 
the constraint is necessarily true or false independent of the 
instantiation).   Otherwise, the system returns UNKNOWN 
and the constraint is rechecked when more variables are 
instantiated. 
 Unlike in automated planning systems, a constraint with 
value other than TRUE does not necessarily halt the 
process or cause backtracking.  Instead, a violated 
constraint is called to the  attention of the user, who has the 
choice of ignoring the violation or changing the step that 
triggered the violation. 
 
Temporal Representation PASSAT supports the 
scheduling of tasks via constraints on the earliest and latest 
possible times for the start and end points of tasks.  
Temporal constraints typically refer to these end points but 
may also refer to upper and lower bounds on those time 
points. Temporal constraints can also be expressed using 
Allen’s interval relations [(Allen, 1984)].1 
 
Domain Definition PASSAT utilizes a number of 
coordinated databases to define its application domain.  An 
ontology (based on the Generic Frame Protocol 
representation [Karp et al., 1995]) defines the hierarchical 
organization of classes and instances and their properties.  
State predicate and task statements are declared, 
specifying the number and classes of their arguments.  
Functions are similarly declared, with the additional 
declaration of the class of the function's value.  Some 
predicates and functions are computable (e.g., <, +, and 
Distance) while others are defined by their extent.  The 
world state is defined by a set of ground state predicates.  

User-centric Plan Development 
PASSAT currently provides two main modes of plan 
development: interactive plan refinement and plan 
sketching.   Future versions of PASSAT will also support 
an advice module to guide plan development. 
                                                 
1 The temporal reasoning portion of the system is not yet 
fully implemented. 

Figure 2. A Candidate Template for Task Refinement
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Interactive Plan Refinement  
Interactive plan refinement in PASSAT involves three 
types of planning step: expand task, instantiate variable, 
and resolve constraint. 
 
Expand Task When a task is to be expanded, the system 
offers the user the choice of applying a predefined 
template, specifying a set of subtasks interactively, 
sketching a solution (see below), or dropping the task.  
 When the user chooses a template to apply, the system 
first unifies the task and the template's purpose, making 
appropriate substitutions throughout the template.  
PASSAT adds the (partially instantiated) subtasks and 
constraints of the template to the plan.  In addition, it 
extends the agenda to include planning steps to expand the 
new subtasks, to check the new constraints, and to 
instantiate any unbound variables from the template.  The 
planning step for the parent task is marked as completed 
and removed from the agenda.  In the displayed plan, the 
parent task is shown with its subtasks.   
 As the system performs this step, it also checks the 
status of all new constraints.  If one is found to be valid, 
the planning step to check it is marked as completed and 
removed from the agenda.  If it is found to be invalid, the 
planning step is flagged.  
 As the system expands a task, other planning steps may 
be affected.  If the unification results in the assignment of a 
value to a variable, the planning step for instantiating that 
variable is removed.  The status of constraints that 
contained that variable might now be resolvable; the 
system checks those constraints and updates the planning 
steps, if necessary. 
 
Instantiate Variable The agenda contains a planning step 
for each unbound variable within the current plan.  When 
the user is ready to instantiate a variable, PASSAT 
provides the set of possible instantiations that satisfy all 
relevant constraints; the user can select from this set, 
provide an alternative value (hence, overriding a relevant 
constraint), or simply mark some subset of the values as 
unacceptable.  When the variable is instantiated, any 
impacted constraints are rechecked.  A user can optionally 
provide a justification (currently, a text string) for his 
actions. 
 
Resolve Constraint As noted above, PASSAT provides 
automated checking of constraints as part of template 
application, with the agenda being used to track constraints 
that the system was unable to validate. Resolve constraint 
steps enable a user to declare that the system can disregard 
individual constraints with the status of FALSE or 
UKNOWN in a given situation. Such declarations do not 
have assertional import (i.e., they do not change the 
system’s world model); rather, they enable relaxation of 
constraints from the planning model embodied in the 
domain templates.  A user can declare that a given 
constraint be ignored for a variety of reasons: (a) he has 

more recent information that would validate the constraint, 
(b) he knows that the constraint is overly strong for the 
current situation, or (c) he wants to explore a what-if 
scenario. PASSAT supports the user in providing a 
justification (currently, a text string) for such constraint 
relaxations.  

Robust Plan Sketching  
Hierarchical planning systems are designed to support top-
down development of plans, taking an initial high-level 
objective and refining it to increasingly more concrete 
levels.  Human planners, in contrast, often combine 
refinement-style planning with a more bottom-up approach 
that identifies specific tasks to be included in a final 
solution.  For example, the planners of a hostage rescue 
may know where and how they will establish a safe haven 
without yet having decided on a particular high-level 
rescue strategy.   
 Within PASSAT, a user can sketch an outline of a plan, 
with the system providing assistance in expanding the 
sketch to a full-fledged solution for a particular objective.  
A sketch consists of a collection of tasks that (1) may be 
only partially specified, and (2) may occur at various levels 
of abstraction in the plan hierarchy.  When given a sketch, 
PASSAT generates possible sketch expansions, which 
correspond to least-commitment plan structures that embed 
the sketch and all derived consequences.  The user may 
choose any of these expansions to continue planning; the 
agenda will be updated to reflect the derived set of 
outstanding tasks. 
 The sketch processing capability within PASSAT builds 
substantially on the algorithms of [Myers, 1997] but 
provides robustness through an ability to recognize and 
respond to invalid sketches.  By invalid, we mean a sketch 
for which there is no legal completion relative to the set of 
defined templates. To provide robustness in the face of 
invalid sketches, the sketch completion algorithm has been 
extended to tolerate constraint violations that are classified 
as potentially fixable according to prespecified domain 
knowledge about constraints and tasks (discussed further 
below).  PASSAT guides the human planner through the 
process of repairing fixable constraint violations within 
expansions that he selects. Users can select from two types 
of repair method: constraint drop and task modification.  
 Constraint drop repair involves simply ignoring the 
violated constraint; this type of repair is appropriate for 
constraints with a ‘soft’ interpretation (i.e., they 
correspond to preferences or guidelines rather than gating 
conditions). For example, a template for a helicopter airlift 
may require wind speed below a certain threshold; a 
planner may decide to drop that constraint in the event that 
the current wind speed only slightly exceeds the threshold 
and all other requirements are satisfied. Constraint drop 
repair can be applied only to constraints that have been 
explicitly declared as ignorable for the sake of sketch 
repairs.   
  Task modification involves changing one or more 
arguments of a sketch task that are deductively linked to a 
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violated constraint.  For instance, consider a sketch that 
contains two tasks: the establishment of a safe haven at a 
particular location, and a helicopter airlift to remove 
rescued hostages to the safe haven.  If the helicopter has 
insufficient range to reach the safe haven, the user would 
be given the options of selecting an air asset with 
appropriate range characteristics, or choosing a closer 
destination for the safe haven.1 Domain knowledge 
restricts the set of arguments that can be modified in 
service of sketch repair, as a means of limiting the number 
of options to consider (both by the user and the system). 
 The robust plan sketch capability within PASSAT is 
designed to be used iteratively, with a human planner 
repeatedly refining a sketch in response to detected 
problems until a solution is found that meets his needs.  
 
Sketch Example To illustrate the sketch-processing 
capabilities within PASSAT, we consider an example from 
a hostage rescue scenario in which a group of Americans is 
being held captive by guerrillas in Mogadishu's town hall.  
Riyadh Airport has been selected as the jumping-off 
location for the mission while the hostages are to be 
evacuated to Riyadh Stadium. The high-level task for this 
plan is represented as 
 
 RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL,  
         RIYADH-AIRPORT,  
         RIYADH-STADIUM) 
  
 PASSAT provides an interactive editor for specifying a 
plan sketch. Figure 3 shows a completed sketch consisting 
of four tasks: (1) having an infiltration team (Yellow-
                                                 
1 A sketch could also be repaired by changing the type of a 
task, rather than simply changing the task arguments (e.g., 
ground-based evacuation rather than an airlift).  PASSAT 
does not currently support this class of sketch repair. 

Team-1) swim from a submarine (denoted by the variable 
?SUBMARINE) located at the entrance to Mogadishu Port 
to the port itself, (2) inserting a combat team (Green-ODA-
1) at the Town Hall via a UH-60A helicopter, (3) having 
the combat team storm the Town Hall, and (4) positioning 
a security team at the evacuation site.  The labels above 
each task argument identify that argument’s ‘role’ in the 
task. 
 Processing of this sketch by PASSAT yields six 
expansions, with a range of three to four violated 
constraints in each. The user can select one of these 
expansions and explore options for repairing its associated 
constraint violations. Figure 4 summarizes the constraint 
violations and the hierarchical template structure for one of 
the expansions. 

Figure 5 displays the window that would be presented to 
a user to assist in the repair of the original sketch.  The 
window summarizes the available repair options for each 
violation, which may consist of dropping the constraint, 
changing a parameter for a designated task, or making no 
repair. Because the use of constraint dropping and task 
parameter changes is restricted (by predefined domain 
knowledge about their applicability), these repairs are not 
necessarily applicable in each case.   

To support the user in changing a task parameter, the 
interface provides a drop-down list of candidate values.  
This set consists of instances for the type associated with 
that argument, filtered to remove values that lead to 
violations of the given constraint (in accord with the 
deductive linkage from the sketch task to the constraint). 
This filtering is incomplete: the list may include values that 
do not fix the detected  problem, due to interactions with 
constraints in other  parts of the plan. Future versions of 
PASSAT will incorporate additional checking to restrict 
this set further.  
 To repair the chosen expansion, the user could perform 
the following repairs: 

Figure 3. Sample Plan Sketch for the Hostage Rescue Task 
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• drop the constraint VC1 
• modify the Helicopter argument of the DROP task 

to be UH-60L-1 rather than UH-60A-1 to 
address the constraint VC2   (i.e., the UH-60Ls 
have greater range than the UH-60As ) 

• drop the constraint VC3 
• modify the Force-Composition argument of the 

POSITION task to be SECURITY-PLATOON-1  
(to address the violated constraint  VC4 )  

 

Given a set of repairs, PASSAT attempts to validate the 
revised sketch.  In this case, the repairs resolve the original 
problems but introduce a violation of the constraint  
(COMBAT-EFFECTIVE  SECURITY-PLATOON-1).  
This new problem can be repaired by changing the Force-
Composition argument to be SECURITY-PLATOON-2 
(i.e., a platoon that has been certified ready for combat). 
Processing of this revised sketch yields a single expansion 
with no constraint violations.  Figure 1 shows the insertion 
of that expansion for the original Hostage-Rescue task, 
with the sketch tasks highlighted in bold font.  Constraints 
that the user chose to drop appear highlighted on the 
agenda, and are marked as completed but ignored.  At this 
stage, the user could continue planning with the sketch 
result, using any of PASSAT's capabilities for interactive 
planning (e.g., applying templates, instantiating variables), 
or by providing a plan sketch for an unrefined objective. 

Advice 
In future work, we will extend PASSAT to enable a user to 
guide and control automated template expansion through 
the metaphor of advice [McCarthy, 1958]. Advice within 
PASSAT will express user recommendations for 
characteristics for the desired solution, thus limiting the set 
of allowed operations (human or automated) in 
constructing plans.  Advice will be heuristic, capturing 
conditions that the user would like satisfied, but that can be 
relaxed if necessary. 
 PASSAT will monitor evolving plan content to identify 
violations of stated advice.  Violations will lead to user 
notification, as well as the posting of appropriate planning 
task entries on the user's agenda.  This work will build on 
our previous work on giving strategic advice to fully 
automated planners [Myers, 1996], with adaptations and 
extensions as required for use within a plan-authoring 
framework. 

Figure 4. Violated Constraints and Plan Structure for the Selected Expansion 

Figure 5.  Sample  Repair Options  

 
Violated Constraints 
VC1.  (SITUATION-TYPE RIYADH-STADIUM HOSTILE) 
VC2. (DISTANCE-< RIYADH-AIRPORT MOGADISHU-TOWN-HALL (RANGE UH-60A-1) 
VC3. (> (SEA-TEMPORATURE MOGADISHU-PORT-ENTRANCE) 40) 
VC4. (PLATOON-SIZED SECURITY-SQUAD-1) 
 

   Expansion Template Structure 
    - HOSTAGE-RECOVERY-TO-A-POTENTIALLY-UNSTABLE-AREA 
     - ADVANCED-RECON-OF-TARGET-AREA 
         - RECON-SEAPORTS-IN-AREA 
           - RECON-WITH-COVERT-GROUND-FORCE 
               - SWIM-INSERTION-FROM-SUBMARINE 
     - RESCUE-AND-RECOVER-HOSTAGES 
         - HELICOPTER-INSERTION-ROPE 
     - SITE-DEFENSE-LARGE-REACTION-FORCE 
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Usability Features  
We have incorporated several features into PASSAT to 
facilitate its use within real applications. 
 Because the development of a plan may span several 
days or be interrupted by other duties, PASSAT offers the 
ability to save a plan and to restart it later.  As PASSAT is 
further developed to support multiple planners working on 
a single plan, this facility will allow parallel efforts to be 
coordinated in a shared plan repository. 
 A planner may sometimes develop a part of the plan and 
realize that the initial idea will not work.  The system 
currently allows the user to undo the steps in reverse order.  
In the future, the user will be able to back out of earlier 
steps without necessarily losing later, independent steps. 
 PASSAT is designed to reduce the chance of inadvertent 
errors.  Strong typing for task, function, and predicate 
definitions enables the checking of inputs for consistency.  
If a processing error should occur in the system, the undo 
mechanism can provide recovery to a safe checkpoint. 

Process Facilitation 
PASSAT facilitates the user's plan-authoring process by 
helping the user track information that is important to the 
development of the plan.  Process facilitation is supported 
primarily by two capabilities:  
 

• A prioritized agenda of planning steps listing the 
decisions that the user must make to address 
problems or incompleteness in the current plan. 

• A mechanism for identifying key information 
requirements implicit in the user's partial plan, 
and for directing the user's attention to relevant 
plan elements when new information arrives.     

Agenda and Prioritization   
PASSAT's agenda consists of the open planning steps 
facing the user given the current state of planning.  By 
‘planning steps’, we mean decisions and actions that the 
user makes in the process of developing the plan; these are 
distinguished from the activities that are part of the plan 
itself.  PASSAT currently supports three types of planning 
step – expand task, instantiate variable, and resolve 
constraint – described earlier. The planning steps PASSAT 
displays in its agenda can be filtered by the user along 
several dimensions, including step type and completion 
status.  The user can also sort the agenda along several 
dimensions, including step type, creation time, and 
alphabetical order. The filtering and sorting facilities can 
be especially useful for helping the user find a particular 
step on the agenda. 
 In real domains, the development of a plan can involve 
hundreds or even thousands of decisions.  
Correspondingly, PASSAT's agenda can grow quite long 
during the planning process.  The system provides some 
basic mechanisms to control agenda growth – instantiating 

variables during template application, automatic 
calculation of constraints – and to control information 
overload in the agenda display – the aforementioned 
agenda filtering and sorting.  However, even with these 
capabilities, the agenda can frequently reach a size that is 
overwhelming to the user.  In the face of a large number of 
planning steps, we need a technique for keeping the human 
planner focused on the most important ones. 
 To deal with this problem, we have developed 
mechanisms for prioritizing the planning steps on the 
agenda, according to some notion of a step's importance to 
the planning process.  Our approach has been to offer a 
suite of prioritization tools, from which the user may 
choose given the specific planning situation.  Currently, 
PASSAT supports three prioritization approaches: 
 
Predefined Each subtask, variable, and constraint in a 
template may be tagged with a qualitative priority (high, 
medium, or low), corresponding to the importance of 
making a decision about that entity (expanding the task, 
instantiating the variable, checking the constraint).  
Predefined priorities always take precedence over 
PASSAT's other prioritization methods in ordering the 
agenda display.  
 
Commitment-based This approach prioritizes each 
planning step according to the degree that a decision will 
constrain the rest of the planning process, giving highest 
priority to the most constraining decisions.  This criterion 
is especially useful in collaborative planning situations, 
where it is important to make decisions early when they 
will constrain the alternatives available to other planners.  
Our technique measures commitment as the expected 
number of future decisions eliminated by performing the 
step.  We approximate this with a recursive formula that 
performs a lookahead search through the plan space.  
While we use some simple heuristics to reduce the size of 
the search, the current procedure is still reasonably 
expensive relative to PASSAT's other update calculations. 
As a result, the current implementation of commitment-
based prioritization covers only tasks.  In future work, we 
will investigate techniques for approximating the 
commitment level of a planning step more efficiently. 
 
Experience-based In contrast to the commitment-based 
approach, which is an attempt to identify what the planner 
should do next based on some theoretical model of 
planning, the experience-based approach bases its 
prioritization on what real human planners have done first 
in the past.  The experience-based prioritization technique 
stores preference histories of planning steps, and learns a 
preference function for them using the online learning 
algorithm of [Cohen et al., 1998].  Planning steps are 
indexed by the step type, the object name, and the ‘call 
stack’ of templates that created the object. 
 
Other possible methods for deriving a step's priority 
include 
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• Urgency-based: prefer decisions that involve 
execution tasks that are scheduled to start soon. 

• Backtracking-based: prefer decisions that are 
difficult to achieve. This is effectively the 
prioritization criterion of the Fewest Alternatives 
First strategy and related heuristics [Pollack et al., 
1997] used in automated planning. 

• Depth-first:  prefer steps that derive from the 
steps most recently performed by the user. This 
approach assumes that the user wants to remain 
focused on one area of the plan before moving to 
another. 

• Breadth-first: prefer steps that derive from the 
steps least recently performed by the user.  

Information Requirements 
In real-world planning, the human planner often makes 
decisions based on criteria that are too complex or vague to 
formalize in a predicate.  These criteria are often based on 
external sources of information (e.g., reports, meetings).  
For example, a SOF planner may want to base his selection 
of a rendezvous point on an overall assessment of an 
intelligence report from the relevant region, though it may 
be virtually impossible to formalize the exact set of 
conditions the planner is looking for within that report.  In 
a plan-authoring system, we want to be able to capture 
these criteria and information sources, and record the 
connection between them and the relevant elements of the 
plan.  PASSAT accomplishes this through the use of 
information requirements. 
 In addition to specifying the method for expanding a 
task, a template may also include one or more information 
requirements.  An information requirement specifies a 
monitoring condition on an information source that may be 
useful for determining the applicability of the template, for 
selecting variable instantiations, or for resolving the 
template's constraints. 
 Currently, information requirements are used in 
PASSAT to make explicit to the user the connection 
between plan elements (e.g., variables, constraints) and 
information sources. When a planner activates an 
information requirement in a template, the system creates a 
link between the information described in the information 
requirement and an element or elements in the plan.  When 
the information arrives, PASSAT calls the planner's 
attention to the relevant plan element by creating a high-
priority item on the agenda to revisit that element.  
PASSAT's current method of detecting when information 
has arrived is to be told explicitly by a user, but one could 
imagine more sophisticated automated sentinels that 
would, for example, monitor data sources (e.g., Web 
pages, databases) for specific updates. 
 For example, a user planning a SOF mission may make 
a tentative assignment to a variable ?RENDEZ-POINT 
based on the sketchy information available to him.  At the 
same time, he may activate an information requirement 
representing an intelligence report on the region in 
question and attach it to the variable ?RENDEZ-POINT. 

When the intelligence report comes in, PASSAT will 
notify the planner by putting the Instantiate Variable step 
for ?RENDEZ-POINT back on the active agenda, giving 
it a high priority, and highlighting the element on the 
planner's agenda display. 

Related Work 

In its effort to increase relevance to real problems, the field 
of AI planning has recently produced a number of more 
human-centric technologies that incorporate both 
interactive and automated planning capabilities.  Work in 
this area has progressed on two fronts: (a) the 
incorporation of more sophisticated reasoning into simple 
plan specification tools, and (b) the addition of interactive 
and mixed-initiative capabilities into existing automated 
planning systems.  The first category includes systems 
such as the SOFTools Temporal Plan Editor, APGEN, and 
INSPECT.  Examples in the second category include O-
Plan, Heracles, and TRIPS. 
 The SOFTools Temporal Plan Editor [GTE, 2000] 
supports the graphical specification of a collection of 
activities on a series of timelines; its automated capabilities 
are limited to simple syntactic checking (e.g., action start 
times precede end times). The APGEN system [Maldague 
et al., 1997] provides a timeline-oriented interface for 
creating mission sequences as well as automated validation 
of predefined flight constraints. There is currently an effort 
under way to link APGEN to the RAX-PS planner 
[Jonsson et al., 2000] to enable the automated synthesis of 
plans. The resulting system will facilitate user-driven 
exploration of options, as automation enables candidate 
plans to be generated rapidly. INSPECT [Valente et al., 
1999] provides an interactive planning environment in 
which users can create plans by drawing on predefined 
knowledge bases of planning operators.  A knowledge-
based critic looks for problems in user-formulated plans, 
both syntactic and (in limited cases) semantic. 
 Within Heracles [Knoblock et al., 2001], a user can 
construct plans by interactive selection and instantiation of 
predefined HTN-style templates. Heracles provides 
constraint reasoning that facilitates the planning process by 
focusing users on choices that are guaranteed compatible 
with earlier decisions.  Plans must instantiate the 
predefined templates, thus preventing users from exploring 
‘out of the box’ solutions. The TRIPS system [Ferguson 
and Allen, 1998] provides a dialog-based interface to a 
temporal planner that enables users to interactively guide 
the construction and execution of a plan through a 
cooperative, mixed-initiative effort. 
 O-Plan was developed initially as a fully automated 
HTN planning system but has been modified to incorporate 
interactive capabilities such as user support for operator 
selection and variable instantiation [Drabble and Tate, 
1995], and human-driven exploration of multiple courses 
of action [Tate et al., 1998].  PASSAT lacks somem of the 
automated planning capabilities within O-Plan (i.e., there 
is no infrastructure to support automated search with 
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backtracking), being focused instead on more human-
centric planning methods (interactive planning, sketching, 
advisability). O-Plan contains a task agenda similar to that 
in PASSAT, but no prioritization methods. Furthermore, it 
does not include information requirements, or capabilities 
related to sketching or advice. 

Conclusions 
Our long-term objective for PASSAT is to provide a 
planning environment that covers the range from purely 
interactive through mixed-initiative to user-controllable 
automated planning capabilities. At all times, automation 
would be readily controllable and understandable by a 
human planner, enabling humans to determine when 
automation is used, to control how automation applies, and 
to validate or override any automated decisions. 
 PASSAT currently provides a strong base of interactive, 
template-based plan authoring and robust sketch-based 
planning.  Our main next steps on PASSAT are (a) to 
increase the flexibility of the interactive planning, and (b) 
to implement the advisability module for imposing high-
level constraints on a plan that can be validated 
automatically. 
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Abstract 
Automated planning algorithms embody a theory of causality grounded in linking 

enabling effects of actions or initial world conditions to preconditions of subsequent 
actions.  This model has several drawbacks when applied in the context of mixed-
initiative planning. First, it requires comprehensive causal models that describe for every 
action its full set of preconditions and postconditions; in many application domains, such 
models will not be available. Second, the causal link approach does not include several 
forms of intraplan relations that a human may wish to document and reason with. 

We present a qualitative approach to reasoning about plan structure that is designed 
for mixed-initiative plan development. We define a set of plan relations that characterize 
key interactions among plan components, and an accompanying calculus for reasoning 
qualitatively about the effects of changes on a plan.  We argue that such an approach is 
better suited to mixed-initiative planning than is the standard causal link method.  
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1 Introduction 
As the AI planning community turns increasingly to realistic problem domains to 
motivate its work, there has been a growing recognition of the need for mixed-initiative 
planning techniques.  This need is driven by two concerns.  First, full automation is 
inappropriate for many application domains.  In particular, most users want to be 
involved in the planning process, both to influence the types of solution that are produced 
and to develop an understanding of the process by which a solution was formulated.  
Second, the cost of formulating the correct and comprehensive background theories 
required by automated planners is prohibitive.  These theories consist of causal models 
that describe for every action its preconditions (i.e., the conditions under which it could 
be applied) and its postconditions (i.e., the conditions that result from execution of the 
action). Most planning knowledge bases to date provide only poor approximations to 
realistic models of activity.   Furthermore, formulation of even these simplified models 
remains an art that requires highly trained specialists in AI planning and knowledge 
representation. Mixed-initiative planning systems can reduce the knowledge requirements 
by relying on the user to provide information when necessary.  

Most work to date on mixed-initiative planning has assumed a comprehensive set of 
background knowledge that can be used by the system to validate interactions with the 
user (e.g., (Allen and Ferguson, 2002; Kim and Blythe, 2003)).   We are interested in a 
model of mixed-initiative planning that does not require complete reliance on predefined 
knowledge bases.  In particular, we view plan development as a cooperative problem-
solving process in which both the system and the user contribute knowledge during a 
planning session.  

One consequence of this collaborative model is that the system can no longer 
guarantee generation of a standard causal link structure for the plan (Weld, 1999), as not 
all required knowledge would be resident within the system’s knowledge base.  Causal 
structures enable proof of the ‘correctness’ of a plan, meaning that simulated execution of 
the actions in the plan from the initial state yields a state that satisfies stated objectives. 
Additionally, they provide the means to answer the following questions (Kambhampati 
and Hendler, 1992), which are important for both automated and collaborative planning:  

 
A. What role does a given action, constraint, or assumption play in a plan? 
B. What impact would a given change have on a plan? 
 

For these reasons, the planning community has been reluctant to move toward models 
where causal structures are not a by-product of planning. 

To obtain a full causal structure for a plan when background models are incomplete 
or unavailable, a human planner would have to annotate plans.  There are two problems 
with such an approach.  First, supplying a complete set of causal annotations would be a 
time-consuming and laborious task. Second, the formulation of causal link justifications 
for activities is a highly technical skill that is beyond most users.   

We believe that much of the value of these complex causal models can be attained 
through simpler, qualitative models that capture commonsense notions of intraplan 
relationships.   In this paper, we propose a user-centric model for causal structure that is 
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grounded in qualitative relationships among plan objects. The basic idea is to trade some 
of the detail and precision of the formal causal models for a simpler approach that is 
easier both to formulate and apply.  This simpler approach would still enable answers to 
questions (A) and (B) above, although in qualitative rather than quantitative terms. 
Furthermore, as we argue below, the models of causality embraced by the AI planning 
community are unnecessarily narrow because of their evolution from the structures 
required for automated planning. In particular, they do not capture certain notions of plan 
dependency that are important for mixed-initiative planning systems. 

An interesting parallel can be drawn between plan development and other synthesis 
tasks such as mechanical design. Commercial design systems support human design 
activities by providing automation for low-level, tedious tasks.  A designer will generally 
not document every step/component within a design. Indeed, studies have shown that 
humans are resistant to providing full rationale information as part of the design process, 
due both to the substantial time commitment required and the changes in work style that 
result (Carroll and Moran, 1991; Conklin and Yakemovic, 1991).  However, designers 
track key dependencies and requirements that they believe will be important in 
understanding and maintaining a design downstream.  We believe that this user-driven 
approach should also be the objective for documenting causal structure within mixed-
initiative planning technology. 

The remainder of the paper is organized as follows. Section 2 presents our qualitative 
model of plan relations. Section 3 provides an example that contrasts the use of standard 
causal link structures with our qualitative approach.  Section 4 defines a calculus for 
reasoning qualitatively about plan changes, while Section 5 introduces conditions of 
coherence for a set of qualitative causal relations.  Throughout, we draw on examples 
from a simplified version of a noncombatant evacuation operation (NEO) domain that 
was developed for use within the PASSAT mixed-initiative planning system (Myers et 
al., 2002).  
 

2 Qualitative Plan Model  
Ideally, a system that reasons about plan structure should combine both causal links and 
qualitative information about plan relationships.   We define a candidate set of relations 
to support qualitative reasoning about the effects of plan changes that contains relations 
of both types. 

2.1 Plan Elements 
Our model of a plan contains three types of element: 
 

Action: an activity that can be undertaken  
Effect: a condition (either to be achieved, the expected result of executing an action, 

or a property of the initial world state) 
Parameter: an argument to an action or condition 

 
We use the symbol Obj (i.e., plan object) to denote an arbitrary plan element from any of 
the above types.    
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A plan relation is defined between a source object and a target object and is 
represented using the syntax: 

 
  Reln: Source-Obj  Target-Obj  

2.2 Causal Link Relation 
The causal-link relation, which is the standard relation within most automated planning 
systems, indicates that the source effect is a necessary condition for the target effect.   
 

Causal-link: {Effect}  { Effect } 
Figure 1. Causal Link Relation  

2.3 Qualitative Relations 
Figure 2 summarizes our qualitative plan relations.  Broadly speaking, the qualitative 
relations can be separated into two categories: temporal (QR1 – QR3) and logical (QR4 – 
QR5).  
 

QR1 Precedes: {Action | Effect}  {Action | Effect} 
QR2 Necessary-for: {Action | Effect}  {Action | Effect} 
QR3 Supports: {Action | Effect}  {Action | Effect} 
QR4 Parameter-dependence: {Parameter}  {Parameter} 
QR5 Condition-dependence: {Effect}  {Action | Effect | Parameter} 

Figure 2. Qualitative Plan Relations 

 

2.3.1 Qualitative Temporal Relations  
The qualitative temporal relations capture the notion that a given action or effect in a plan 
must precede some other action or effect. We consider three types: precedes, necessary-
for, and supports. 

The precedes relation captures the notion that the specified source action or effect 
should occur before the specified target action or effect, without providing any indication 
of why.  This type of relation can be used to capture a preference for performing 
activities in some designated order when there is no necessary reason for that order.   For 
example, consider the actions of preparing an evacuation site and flying evacuees to the 
evacuation site.  Although it would be possible to perform those actions in parallel, a 
given planner may have a preference for completing the preparation prior to the start of 
the airlift of the evacuees, possibly to enable a delay of the airlift in the event of problems 
with the preparation.  

The necessary-for and supports relations specialize the precedes relation to capture 
semantic motivations for the ordering relation. Necessary-for captures the notion that a 
given action or effect must occur before a designated action or effect in order to enable 
the target plan element. For example, it would be necessary-for evacuees to be marshaled 
to an assembly point before they could be loaded onto an evacuation aircraft.  In essence, 
the necessary-for relation constitutes a qualitative abstraction of the causal-link relation. 
Changes could impact plan objects linked by a necessary-for relation in two ways.  First, 
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delays to necessary activities will propagate.   Second, failure of a task that is necessary-
for another task would likely jeopardize the latter. 

The supports relation indicates that the source action or effect contributes to the 
target action or effect in some noncritical way,. For example, a patrol mission may 
provide additional support to a given evacuation activity, without being essential to its 
undertaking. Hence, if the aircraft performing the patrol were redirected to support a 
different action, the evacuation process should not be jeopardized.  Source objects for 
supports relations correspond to ‘redundant’ actions or effects that, while unnecessary, 
lead to improved plan robustness or quality.  While such redundancy is considered good 
practice in human-authored plans, causal link planners explicitly prohibit redundancy by 
imposing conditions of minimality on a plan’s causal structure. 

2.3.2 Qualitative Logical Relations 
The qualitative logical relations QR4 and QR5 capture the idea that there is some form of 
dependency between the source and target elements such that a change to the source 
could impact the target. However, the nature of that relationship is not captured precisely 
in terms of a deductive specification or mathematical formula.  Such situations arise 
frequently in planning situations, where many factors that influence decision-making are 
problematic to formalize.   These factors could include conditions that are too complex to 
codify (i.e., a form of the qualification problem (McCarthy 1977)) or subjective 
preferences that vary among human planners. 

For example, the choice of assembly point in an evacuation plan will necessarily 
impact the type of aircraft that can be used for transporting evacuees (e.g., a small 
helicopter may be necessary for evacuation from an embassy, while a larger aircraft could 
be used at a football stadium).  However, there is no hard-and-fast rule for determining 
what type of aircraft should be used for a particular location.    

Qualitative logical relations can be designated between plan parameters (QR4), or 
between plan effects and any type of plan component (QR5). The relationship between 
the choice of assembly location and transport aircraft in the example above corresponds 
to a parameter-dependence relation, while the relationship between the security level and 
choice of assembly point corresponds to a condition-dependence relation. 

We note that the qualitative logical relations could be made ‘quantitative’ by 
associating definite constraints with them.  For the parameter-dependence relation, these 
constraints would be in the form of a set of equations linking the two parameters.  We 
introduce the term parameter-constraint relation to refer to this specialization of the 
parameter-dependence relation.  One of the most valuable forms of parameter-constraint 
relation would be an equality constraint indicating that two planning variables must 
necessarily be instantiated to the same value (such constraints are sometimes referred to 
as codesignation constraints). A comparable condition-constraint relation could similarly 
be defined.  

2.4 Properties of the Model  
The qualitative model trades the precision of exhaustive causal links for simplicity and 
ease of specification.  Indeed, there is a natural abstraction from an exhaustive causal link 
structure to ‘corresponding’ qualitative models that involves replacing every causal-link 
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relation with a precedes or necessary-for relation.  We refer to a plan transformed in this 
manner as a qualitative abstraction of the original.  

While the qualitative relations provide less precision than a full set of causal links, 
they offer two key advantages.  First, they are simpler and more intuitive to specify, thus 
making them better suited for use in a mixed-initiative planning environment. Second,  
there are relationships that can be modeled in the qualitative framework that are not 
supported by causal links or logical constraints associated with operator preconditions.  
In particular, the supports relation enables the description of a connection between plan 
objects that is not essential for plan correctness (as described above).  As well, the 
precedence relation allows the expression of ordering information independent of 
causality.  Furthermore, the condition-dependence and parameter-dependence relations 
enable ill-defined connections between plan objects to be expressed; this ability is useful 
when the precise logical or mathematical relationship is either not known or not easily 
formalizable, yet there is still a desire to document some relationship between them. 
 

2.5 Sources 
Our motivation for defining qualitative relations is to enable reasoning about plan 
changes within a mixed-initiative planning environment that combines human and 
automated planning skills.  Within this context, several sources would contribute to the 
set of causal relations for a given plan.  First, background knowledge could capture both 
causal link and qualitative causal relations for individual actions or within ‘standard 
operating procedures’ that arise frequently in practice (i.e., in the style of hierarchical 
task networks (Erol et al. 1994).  Second, the human planner could contribute additional 
relations.  In the future, some sort of learning mechanism could be applied to hypothesize 
qualitative relations from a user-authored plan, yielding a baseline that a user could then 
modify (e.g., along the lines proposed by (El Fattah 2003)). 
 

3 Example: Using the Qualitative Relations 
To illustrate the use of the qualitative relations for planning, consider the plans in Figure 
3 and Figure 4 for a simple evacuation operation.  These plans are designed to achieve 
the goal conditions Prepared(Camp1) and At(Evacuees Camp1) based on the operators 
defined in Figure 5. Each of the plans includes conditions from the initial state upon 
which actions and effects in the plan depend, as well as the effects that constitute the 
desired goal state. To simplify reference, each action in the plan is labeled with a unique 
identifier (e.g., N1).  

The plan in Figure 3 corresponds to a solution that an automated causal link planner 
might produce for this problem.  It includes a full causal link annotation that matches 
each action precondition to an earlier effect in the plan. 
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Assemble(?GROUP=Evacuees 
?PLACE=Embassy)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

Initial State
Evac-Area(Sector1)
In (Embassy Sector1)
Secure(Embassy)
At(UH60-A  Base1)
#Evacuees (25)
Secure(Camp2)
Secure(Camp1)

At(?GROUP=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Embassy)
At(?OBJ=Evacuees ?PLACE=Embassy)

¬At(?VEH=UH60-A ?DEST=Base1)
At(?VEH=UH60-A ?DEST=Embassy)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)
¬ At(?OBJ=Evacuees ?PLACE=Embassy)

At(?VEH=UH60-A ?DEST=Embassy)

¬At(?VEH=UH60-A ?DEST=Embassy)
At(?VEH=UH60-A ?DEST=Camp1)

Evac_Area(?SECTOR=Sector1)
In(?PLACE=Embassy ?SECTOR=Sector1)

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)
N1

N2

N3

N4

Causal Link
Goal State

Prepared(Camp1)
At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

At(?VEH=UH60-A ?PLACE=Camp1)
LOADED(?VEH=UH60-A ?OBJ=Evacuees)

LOADED(?VEH=UH60-A ?OBJ=Evacuees)
AT(?OBJ=Evacuees ?DEST=Camp1)

N5
Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)

Prepared(?PLACE=Camp1)

N6

 
Figure 3. Evacuation Plan with a Complete Set of Causal Link Relations 

 
 

Initial State
Evac-Area(Sector1)
In (Embassy Sector1)
Secure(Embassy)
At(UH60-A  Base1)
#Evacuees (25)
Secure(Camp2)
Secure(Camp1)

Load(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Embassy)

N2

N3

Goal State
Prepared(Camp1)

At(Evacuees Camp1)

Unload(?VEH=UH60-A ?OBJ=Evacuees ?PLACE=Camp1)

N5
Prepare(?PLACE=Camp1)

Secure(?PLACE=Camp1)
N6

Precedes
Necessary-for
Supports

Parameter Dependence
Causal Link

Condition Dependence

Assemble(?GROUP=Evacuees 
?PLACE=Embassy)

N1

Secure(?PLACE=Embassy)

At(?VEH=UH60-A ?PLACE=Base1)

Fly(?START=Base1 ?DEST=Embassy ?VEH=UH60-A)

Fly(?START=Embassy ?DEST=Camp1 ?VEH=UH60-A)

N4

Patrol(?SECTOR=Sector-5)

N7

At(?OBJ=Evacuees ?PLACE=Embassy)

At(?OBJ=Evacuees ?PLACE=Embassy)

?SECTOR=
SECTOR-OF(?PLACE) 

 
 

Figure 4. Evacuation Plan with Qualitative and Causal Link Relations 
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The plan in Figure 4 represents a solution that a human planner might construct using 
some kind of plan authoring tool. It contains all of the actions in Figure 3 plus a Patrol 
action (N7) that provides additional security for the sector to which the evacuees will be 
moved.  According to the logic of the domain operators, this action is redundant because 
it does not establish any effects that are required within the plan.  However, it is typical 
for human planners to build such redundancy into plans to provide additional safeguards 
in the face of unexpected events.    

The plan in Figure 4 also contains a candidate set of both casual link and qualitative 
relations that document what the user might view as the key dependencies within the 
plan.  The main differences between this hybrid set of plan relations and the causal link 
relations in Figure 3 are as follows: 

 
 Causal-link relations in Figure 4 are limited to dependencies on initial state 

conditions that might be expected to change and hence may require modifications 
to the plan (e.g., the security of key locations and the position of the vehicle to be 
used for transporting the evacuees) and important intermediate effects of action 
(e.g., the evacuees remain at the embassy until they are loaded onto the transport 
vehicle).  Static initial conditions and unimportant intermediate effects of actions 
have been omitted. 

 The hybrid annotation replaces certain of the causal-link relations with 
qualitative necessary-for relations, indicating that it is essential for the source 
activity to precede the target activity in the plan but without documenting the 
effects that link the actions.  From the user’s perspective, these effects are 
obvious (e.g., the aircraft has to be loaded before it can be unloaded) and so 
documenting them explicitly is of little value. 

 The qualitative annotations include a precedes relation from node N6 to node N4, 
indicating a (noncausal) preference for ordering those two actions. This ordering 
is not necessary for the plan to succeed.  

 A condition-dependence relation has been added from the predicate 
#Evacuees(25) in the initial world state to the parameter ?PLACE in N1 where the 
evacuees are to be assembled. This relation reflects the fact that the choice of 
assembly location is dependent on the number of evacuees; should the number 
change, the choice may need to be revisited.  

  A parameter-dependence relation has been added from ?PLACE in N1 to ?Veh  
in N2 and a condition-dependence relation added from #Evacuees(25)  in the 
initial world state to ?Veh  in N2. These relations show that the choice of vehicle 
depends on both the number of evacuees and their assembly location, although the 
precise nature of the dependency is unknown.  

 Figure 4 contains a supports relation from N7 to N6, documenting that the Patrol 
action is being performed in service of the Prepare action. No comparable link 
between these nodes is possible in the causal link view because there is no 
enabling relationship between effects produced by N7 and required by N6. A 
parameter-dependence relation has also been added from the ?PLACE parameter 
in N6 to the ?SECTOR variable in N7 indicating that the choice of patrol area 
depends on the evacuation site.   In this case, the relationship could be expressed 
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algebraically by adding the constraint ?SECTOR=SECTOR-OF(?PLACE) to the 
parameter-dependence relation, thus yielding a parameter-constraint relation. 

 
Action: Assemble(?GROUP ?PLACE) 
Preconditions: Secure(?PLACE), Evac-Area(?SECTOR), In(?PLACE ?SECTOR) 
Effects: At(?GROUP ?PLACE) 
 
Action: Fly (?START ?DEST  ?VEH) 
Preconditions: At(?VEH ?START) 
Effects: At(?VEH ?DEST), ¬At(?VEH ?START) 
 
Action: Load(?VEH ?OBJ  ?PLACE) 
Preconditions: At(?VEH ?PLACE), At(?OBJ ?PLACE) 
Effects: Loaded(?VEH ?OBJ), ¬At(?OBJ ?PLACE) 
 
Action: Unload(?VEH ?OBJ  ?PLACE) 
Preconditions: At(?VEH ?PLACE), Loaded(?VEH ?OBJ) 
Effects: At(?OBJ ?PLACE), ¬Loaded(?VEH ?OBJ) 
 
Action: Prepare(?PLACE) 
Preconditions: Secure(?PLACE) 
Effects: Prepared(?PLACE) 
 
Action: Patrol(?PLACE) 
Effects: Prepared (?PLACE) 
 

Figure 5.  Evacuation Planning Operators 

 

4 Qualitative Calculus 
The qualitative calculus determines the impact that different types of change can have on 
a given plan.   Here, we consider only changes to plan objects (parameters, actions, 
effects).  More generally, changes to qualitative and casual link relations should also be 
considered.   

4.1 Impact of Core Plan Changes 
We consider the space of changes to plan elements listed in Figure 6.  Each entry in the 
figure lists a type of plan change along with the class of plan elements to which the 
change applies.1  
 

                                                 
1 Within our framework, the addition of a plan object on its own does not impact qualitative effects, as the 
new object will not (yet) be linked to any other plan object. Since this version of our framework does not 
consider changes to plan relations, we ignore plan object addition.    
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Change-Parameter: {Parameter}  
Cancel: {Action | Effect}  
Delay: {Action | Effect} 
Move-forward: {Action | Effect} 
Change-Truth-Value: {Effect} 

Figure 6. Plan Changes 

Plan changes can have a range of effects on plan elements linked by qualitative and 
casual-link relations.  Our qualitative model considers a set that includes temporal, 
correctness, and minimality effects.  In terms of temporal effects, delay indicates that a 
plan element may be moved further back in time, while move-up indicates that a plan 
element may be moved forward in time.  In terms of correctness, disable indicates that 
the plan element is no longer ‘supported’ within the plan.  In terms of minimality, obviate 
indicates that the plan element may no longer be needed in the plan (e.g., it no longer 
plays a role within the plan).  The effect affect indicates that there may be some impact 
but that no additional conclusions about the nature of the impact can be determined.  

In general, qualitative reasoning will enable inference of potential rather than 
definite impact on a plan.  For this reason, we can categorize qualitative effects according 
to the two modalities of necessity and possibility, indicating whether the effect 
necessarily occurs or only may occur.  Because of the loss of precision inherent to the 
qualitative models, it is generally difficult to establish necessary effects.  However, 
consideration of explicit quantitative information (see Section 4.2) does allow inference 
of necessary effects in some cases. 

Plan changes can have impacts that flow along both ‘directions’ of a plan relation.  
In particular, changing the source element in a plan relation could impact the target 
element (i.e., the forward direction) while changing the target element could impact the 
source element (i.e., the backward direction).   

Below, we consider the direct impact of each type of change on objects related by 
the qualitative relations QR1 – QR5, as well as the causal-link and parameter-constraint 
relations.  Figure 7 summarizes the results. 

4.1.1 Cancel 
The cancel operation deletes an action or effect from a plan.  Equivalently, it can be 
interpreted as having an action that fails at execution time or an effect that is violated.  A 
cancel operation can impact only necessary-for and causal-link relations in the forward 
direction.   In the event that the Source-Obj of a necessary-for or causal-link relation is 
canceled, the Target-Obj would have a necessary enabling effect violated and hence 
would be disabled.  Cancellation of the Target-Obj could potentially obviate the need for 
the Source-Obj for necessary-for, supports, and causal-link relations. However, that 
would be the case only if the Source-Obj was not also the source for a necessary-for, 
supports, condition-dependence, or causal-link relation for a different plan element.   

4.1.2 Change-Parameter 
The change-parameter operation modifies an argument to an action or effect in a plan.  
Such a change can impact elements related by parameter-dependence or parameter-
constraint relations.   In the case where the source is changed and the target is an 



 
 
 

79

unbound parameter (similarly, the target is changed and the source is an unbound 
parameter), there will be no qualitative impact.  Hence, we consider only instantiated 
parameters here and in Figure 7.  

For the parameter-dependence relation, a change to Source-Obj could necessitate a 
change to Target-Obj, although the precise nature of the change would not be 
determinable without additional information.  Thus, the impact of a change in the forward 
direction is listed as affect in Figure 6. In contrast, the Source-Obj is independent of the 
value of Target-Obj, so changes to the latter will not affect the former.  To illustrate, 
consider a parameter-dependence relation from the number of evacuees in a NEO 
operation (Source-Obj) to the choice of assembly site (Target-Obj). In the event that there 
is an increase in the number of evacuees, a planner may need to reconsider the chosen 
assembly site (since it may not be large enough to accommodate the enlarged set of 
people).  However, changing the assembly site would not involve any reconsideration of 
the number of evacuees involved (since that number is beyond the control of the planner).  

The impact on a parameter-constraint relation is similar in the forward direction but 
differs somewhat in the backward direction. In particular, the parameter-constraint 
relation is necessarily ‘bidirectional’, being grounded in an actual algebraic constraint.  
For this reason, changes to the Target-Obj of such a relation would yield a possible 
change in the Source-Obj; thus, the qualitative impact of such a change would be affect.  
To illustrate, consider a parameter-constraint relation between the parameters ?X and ?R 
defined by the equation ?X=π*?R2.  In this case, changing ?X or ?R will clearly impact 
the value of the other.   
 

 
FORWARD IMPACT Delay Move-up Cancel Change Param Change TV
Precedes delay * * * * 
Necessary-for delay * disable * * 
Supports delay * * * * 
Parameter-dependence * * * affect * 
Condition-dependence * * * * disable 
Causal-link delay * disable * disable 
Parameter-constraint * * * affect * 
      
      
BACKWARD IMPACT Delay Move-up Cancel Change Param Change TV
Precedes * move-up * * * 
Necessary-for * move-up obviate * * 
Supports * move-up obviate * * 
Parameter-dependence * * * * * 
Condition-dependence * * * * obviate 
Causal-link * move-up obviate * obviate 
Parameter-constraint * * * affect * 

 
Figure 7. Summary of Direct Qualitative Effects for Forward and Backward Impact 
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4.1.3 Change-Truth-Value 
The change-truth-value operation involves modifying the truth-value of a designated 
effect, either from true to false or false to true. Such changes could potentially impact 
plan elements linked by a condition-dependence relation.   In the forward direction, 
change to the source effect of such a relation threatens the viability of the target object, 
hence the qualitative impact is disable.   Change to the target element could eliminate the 
need for the source effect in the event, specifically when the target element is an effect 
and the change establishes the truth of the effect.  In this case, the source object may no 
longer be required in the plan, provided that no other plan element depends on it (i.e., the 
effect is the source object for some other qualitative relation).  For this reason, the 
qualitative effect is listed as obviate.  

The same qualitative effects apply for the causal-link relation, as causal links are 
a specialization of the condition-dependence relation.  

4.1.4 Delay 
A delay operation impacts the three temporal qualitative relations precedes, necessary-
for, and supports, while exhibiting similar behavior for the qualitative relation causal-
link. We consider the impact of a delay operation with the assumption that each plan 
element has an explicit representation of timing information for the occurrence of that 
plan element.  Such information could be in the form of a timepoint for instantaneous 
actions, or a time window for actions with duration.  

Simple qualitative effects can be established for delay operations without 
considering anything beyond the individual qualitative relation. Target-Obj will possibly 
be delayed when Source-Obj is delayed (and necessarily when the time for Target-Source 
is greater or equal to the time assigned to Target-Obj).   A delay to Target-Obj will have 
no impact on Source-Obj.   

4.1.5 Move-Up 
The effects of the move-up operation are the inverses of those of the Delay operation. 
Specifically, a move-up operation will impact only the temporal qualitative relations 
(precedes, necessary-for, supports) and the causal-link relation, and only in the backward 
direction.  The qualitative impact will be a possible move-up of the source-object in such 
relations.  

4.2 Calculus Specializations 
By specializing information about qualitative relations, additional inferences can be 
drawn regarding the impact of plan changes. In particular, the availability of quantitative 
information regarding the constraints linking parameters can lead to more detailed 
modeling of effects. 

To illustrate, consider the case where there is information available about temporal 
slack within a plan.  Consider a qualitative temporal relation Source-Obj  Target-Obj 
such that the constraint TIME(Target-Obj) - TIME(Source-Obj) < D defines a temporal 
buffer between the times for the two plan elements.   If the TIME assignments for both 
plan elements are defined and a Delay operation is applied to Source-Obj such that the 
constraint is violated, then necessarily the Target-Obj must be delayed.   Similarly, if a 
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Move-Up operation is applied to Target-Obj such that the constraint is violated, then the 
time of Source-Obj must also be moved forward in time.   

4.3 Change Propagation 
Figure 7 summarizes the direct qualitative effects that result from various types of plan 
change.  Such direct effects can be propagated across qualitative rules to establish the full 
qualitative impact of a change on a given plan. Propagation involves repeatedly treating 
each new effect as a ‘change’ and then determining what new direct effects are triggered 
by those changes. 
 One general concern with such propagation methods is that they can lead to 
infinite reasoning cycles.  That is not the case within our calculus.  Firstly, the impact of 
changes for the Delay, Move-up, Cancel, Change-TV operations are all directionally 
focused, meaning that while they can trigger chains of effects, those chains will all be 
either in the forward or the backward direction.  If we limit ourselves to cases where 
relations are acyclic (see the discussion on coherence for qualitative relations in Section 5 
below), then the length of these chains is bounded by the length from the modified plan 
object to the end or start (depending on direction) of the plan. While there may be 
multiple chains for each change, the total number is bounded by the number of plan 
nodes.  
 The Change-Param operation is similarly directionally focused provided that there 
are no parameter-constraint relations involved.  The parameter-constraint relation, 
however, can lead to effects that trigger reasoning that moves both forward and 
backward. Because the impact of the changes is limited to a single effect – namely, affect 
– it is clear that the propagation can be halted on any node for which that effect has 
already been generated in response to a given plan change.  Hence, the reasoning is 
necessarily finite.  

4.4 Example: Reasoning with Qualitative Effects 
For the plan in Figure 4 with qualitative and causal link relations, we consider the 
qualitative impact of three changes. 
 

 Move up by one hour the start of the FLY action in N4.  
 

There is a path of qualitative temporal relations from every action node in the plan 
except N5 to N4.  Thus, the propagation of direct qualitative effects of this change 
yields a move-up effect for each node except  N5. 

 
 Revise the initial state predicate #Evacuees(25) to #Evacuees(50). 

 
The direct qualitative effect of that change would be an affect inference for the 
assembly site (i.e., ?PLACE in N1); as a result, the value for this parameter may 
need to change.   Propagation of this direct effect would further lead to an affect 
inference for the choice of vehicle used to transport the evacuees (i.e., ?VEH in 
node N2) by virtue of the parameter-dependence link from ?PLACE in N1to 
?VEH in node N2. 
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 Eliminate N7 from the plan. 
 

No additional effects result, as no other part of the plan critically depends on this 
node. 

 
Another interesting case to consider is changing the goals of the plan to be 

Prepared(Camp2) and At(Evacuees Camp2). With the relations as stated in Figure 4, no 
qualitative effects would be deduced.   Clearly, however, the ideal would be to determine 
that the ?PLACE locations in nodes N5 and N6 should both change to Camp2, and further 
impacts then assessed.   

Standard causal links support this type of reasoning, as they directly connect the 
changed parameters to the impacted variables.  This behavior could be attained within the 
qualitative framework provided that the user added parameter-dependence relations, or 
parameter-constraint relations with explicit equality constraints among such 
codesignating parameters.   Realistically, however, it is unlikely that users will want to 
document their plans at that level of detail.   

One simple solution to this problem is to augment the qualitative reasoning 
calculus with a mechanism that responds to the changing of a parameter value from v1 to 
v2 by marking all other occurrences of v1 in the plan (as well as in the goal or initiial 
conditions linked to any portion of the plan) as having a possible effect affect as a result 
of the change.  In this example, the mechanism would then identify the ?PLACE 
parameters in nodes N5 and N6 as having the effect affect, as well as the initial state 
condition  Secure(Camp1).  

By modifying the ?PLACE parameters to be bound to Camp2, the user would in 
turn trigger recalculation of the parameter ?SECTOR in node N7 via the parameter-
dependence relation with constraint ?SECTOR=SECTOR-OF(Camp2). The marking of 
the initial state condition  Secure(Camp1) as having the effect affect would notify the user 
of the need to ensure the revised condition Secure(Camp2).  Because that condition is 
already true in the initial world state, no further actions are needed to address the goal 
changes. 

5 Coherence of Qualitative Plans 
Causal link structures provide a formal basis for determining the validity of a plan, by 
showing that the actions in the plan lead to a state where the goal conditions are satisfied, 
and that the preconditions of each action are enabled by effects of some earlier action or 
the initial world state. Minimality conditions can also be established by showing that it is 
not possible to remove any set of actions from the plan while continuing to satisfy the 
correctness criteria.  The causal links within a correct and mimimal plan can thus be 
viewed as necessary and sufficient for the plan’s validity. 

This model of validity does not make sense for plans whose causal structure is 
documented in terms of a partial set of causal link and qualitative relations. First of all, 
the user would supply only those relations that he believes are important, with others 
remaining implicit in his internal model of the plan. Second, the plan cannot be proven 
‘correct’ as there is no background model to underpin the validation.  Third, the user may 
have supplied additional relations that transcend the enablement conditions inherent to 
causal link plan validation. 
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Instead, focus must shift to a weaker notion focused on ensuring that the relations are 
consistent. To this end, we introduce the notion of coherence for a plan with qualitative 
causal annotations.  
 
Definition [Coherence Conditions]: 
A set of actions A linked by qualitative relations Q is said to be coherent iff the following 
two conditions hold.  
 Temporal Acylicity: The subgraph formed by the Precedes, Supports, and 

Necessary-for relations is acyclic. 
 Modality Exclusivity:  If there is a path of Supports relations linking plan elements 

P1 and P2, then there is no path of Necessary-for relations linking P1 and P2.   
 

The temporal acylicity condition ensures that the plan does not have temporal loops.  The 
modality consistency condition ensures that a relationship between plan elements is not 
declared as being both necessary and nonnecessary. 

6 Summary 
Qualitative reasoning about the effects of changes on plans has several virtues over 
standard logical/deductive approaches.  First, qualitative reasoning does not require 
comprehensive and correct causal theories. While qualitative inferences can be drawn 
from incomplete models, however, more complete models will yield more informative 
results.  Second, qualitative relations are simpler and more intuitive to define, making it 
possible for users to annotate plans with qualitative relations that reflect their specific 
needs and interests.  In contrast, traditional deductive approaches require sophisticated 
models that have proven to be difficult for users to formulate.   Third, qualitative models 
include relationships that do not require complete formalization of concepts, making 
them usable in situations where precise dependencies among plan elements cannot be 
articulated. 

One of the problems with the qualitative framework defined here is that it is 
derived from simple commonsense notions of plan relations and interactions.  It would be 
valuable to define a formal semantic model that grounds the qualitative relations in 
abstractions of causal-link plan structures. Such a model would enable us to show that the 
calculus ‘does the right thing’, rather than simply matching intuitions as to what should 
happen. 
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